【TensorFlow】TensorFlow函数精讲之tf.contrib.layers.flatten()

本文详细解析了tf.contrib.layers.flatten函数的功能与应用。该函数在卷积神经网络中扮演关键角色,能将多维张量转化为二维张量,以便于全连接层的处理。例如,将100*7*7*64的张量转化为[100,3136]的矩阵,便于后续的神经网络训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.contrib.layers.flatten(A)函数使得P保留第一个维度,把第一个维度包含的每一子张量展开成一个行向量,返回张量是一个二维的,返回的shape为[第一维度,子张量乘积)。

一般用于卷积神经网络全连接层前的预处理,因为全连接层需要将输入数据变为一个向量,向量大小为[batch_size, ……]

如下边,pool是全连接层的输入,则需要将其转换为一个向量。假设pool是一个100*7*7*64的矩阵,则通过转换后,得到一个[100,3136]的矩阵,这里100位卷积神经网络的batch_size,3136则是7*7*64的乘积。

fla = tf.contrib.layers.flatten(pool)

 
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值