【阅读笔记】Improved Training of Wasserstein GANs

本文介绍了针对Wasserstein GANs训练不稳定的问题,提出了一种新的优化策略——梯度惩罚。通过避免权重约束,而是通过惩罚梯度范数来维持判别器的Lipschitz连续性,从而改进了WGAN的训练过程。实验表明这种方法在实践中表现优于标准WGAN和其他GAN变种。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Improved Training of Wasserstein GANs

Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein gans[C]//Advances in Neural Information Processing Systems. 2017: 5767-5777.
GitHub: https://github.com/igul222/improved_wgan_training

Abstract

GAN虽然是个强有力的生成模型,但是训练不稳定的缺点影响它的使用。刚刚提出的 Wasserstein GAN (WGAN) 使得 GAN 的训练变得稳定,但是有时也会产生很差的样本和不收敛。我们发现这些问题的原因常常是因为 weight clipping 来满足 判别器(critic,os.坑,研究了半天才领会这个意思)的 Lipschitz constraint。我们把 weight clipping 转化为成 判别器 的梯度范数关于输入的惩罚。我们的方法优于 standard WGAN 和大部分的 GAN 的变种。

Introduction

Generative adversarial networks

Formally, the game between the generator G and the discriminator D is the minimax objective:
m i n G m a x D E x ∼ p r [ l o g D ( x ) ] + E x ^ ∼ p g [ l o g ( 1 − D ( x ^ ) ) ] min_Gmax_DE_{x\sim p_r}[logD(x)]+E_{\hat{x}\sim p_g}[log(1-D(\hat{x}))] minGmaxDExpr[logD(x)]+Ex^pg[log(1D(x^))]

In practice, the generator is instead trained to maximize E x ^ ∼ p g [ l o g ( D ( x ^ ) ) ] E_{\hat{x}\sim p_g}[log(D(\hat{x}))] Ex^pg[log(D(x^))]。因为这样可以规避当判别器饱和时的梯度消失。

Wasserstein GANs

The WGAN value function is constructed using the Kantorovich-Rubinstein duality to obtain
m i n G m a x D ∈ D E x ∼ p r [ D ( x ) ] − E x ^ ∼ p g [ D ( x ^ ) ] min_Gmax_{D\in\mathscr{D}}E_{x\sim p_r}[D(x)]-E_{\hat{x}\sim p_g}[D(\hat{x})] minGmaxDDExpr[D(x)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值