反正是要学一些API的,不如直接从例子里面学习怎么使用API,这样同时可以复习一下一些基本的机器学习知识。但是一开始开始和以前一样,先直接讲类和常用函数用法,然后举例子。
这里主要是各种优化器,以及使用。因为大多数机器学习任务就是最小化损失,在损失定义的情况下,后面的工作就交给优化器啦。
因为深度学习常见的是对于梯度的优化,也就是说,优化器最后其实就是各种对于梯度下降算法的优化。
理论部分可以见斯坦福深度学习的课程。同时这里推荐一个博客,总结了这些优化器的原理以及性能,写的挺好的:An overview of gradient descent optimazation algorithms
从其中讲几个比较常用的,其他的可以自己去看文档。官方文档:Training
Optimizer
GradientDescentOptimizer
AdagradOptimizer
AdagradDAOptimizer
MomentumOptimizer
AdamOptimizer
FtrlOptimizer
RMSPropOptimizer
二.常用的optimizer类
Ⅰ.class tf.train.Optimizer
优化器(optimizers)类的基类。这个类定义了在训练模型的时候添加一个操作的API。你基本上不会直接使用这个类,但是你会用到他的子类比如GradientDescentOptimizer, AdagradOptimizer, MomentumOptimizer.等等这些。
后面讲的时候会详细讲一下GradientDescentOptimizer 这个类的一些函数,然后其他的类只会讲构造函数,因为类中剩下的函数都是大同小异的
Ⅱ.class tf.train.GradientDescentOptimizer
这个类是实现梯度下降算法的优化器。(结合理论可以看到,这个构造函数需要的一个学习率就行了)
__init__(learning_rate, use_locking=False,name=’GradientDescent’)
作用:创建一个梯度下降优化器对象
参数:
learning_rate: A Tensor or a floating point value. 要使用的学习率
use_locking: 要是True的话,就对于更新操作(update operations.)使用锁
name: 名字,可选,默认是”GradientDescent”.
compute_gradients(loss,var_list=None,gate_gradients=GATE_OP,aggregation_method=None,colocate_gradients_with_ops=False,grad_loss=None)
作用:对于在变量列表(var_list)中的变量计算对于损失函数的梯度,这个函数返回一个(梯度,变量)对的列表,其中梯度就是相对应变量的梯度了。这是minimize()函数的第一个部分,
参数:
loss: 待减小的值
var_list: 默认是在GraphKey.TRAINABLE_VARIABLES.
gate_gradients: How to gate the computation of grad