1021-6-4 剑指 Offer 41. 数据流中的中位数(优先队列)

该博客讨论了一种数据结构设计,用于在数据流中高效地计算中位数。通过使用两个堆(小顶堆和大顶堆)来分别存储数据流的一半大元素和一半小元素,实现了添加元素和获取中位数的O(logN)时间复杂度。这种方法保证了在任何时候都能快速获取数据流的中位数,无论是偶数个还是奇数个元素的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:

题目:
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5

设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。

示例 1:
输入:
[“MedianFinder”,“addNum”,“addNum”,“findMedian”,“addNum”,“findMedian”]
[[],[1],[2],[],[3],[]]
输出:[null,null,null,1.50000,null,2.00000]

示例 2:
输入:
[“MedianFinder”,“addNum”,“findMedian”,“addNum”,“findMedian”]
[[],[2],[],[3],[]]
输出:[null,null,2.00000,null,2.50000]

限制:
最多会对 addNum、findMedian 进行 50000 次调用。

题解:
解题思路:

针对本题,根据以上思路,可以将数据流保存在一个列表中,并在添加元素时 保持数组有序 。此方法的时间复杂度为 O(N) ,其中包括: 查找元素插入位置 O(logN) (二分查找)、向数组某位置插入元素 O(N) (插入位置之后的元素都需要向后移动一位)。

借助 堆 可进一步优化时间复杂度。

建立一个 小顶堆 A大顶堆 B ,各保存列表的一半元素,且规定:

A 保存 较大 的一半,为升序数组。长度为 N/2( NN 为偶数)或 N/2+1( N 为奇数)
B 保存 较小 的一半,为降序数组,长度为 N/2( N 为偶数)或 N/2-1( N 为奇数)

随后,中位数可仅根据 A, B 的堆顶元素计算得到。
在这里插入图片描述

算法流程:
设元素总数为 N = m + n ,其中 m 和 n 分别为 A 和 B 中的元素个数。

addNum(num) 函数:
当 m = n(即 N 为 偶数):需向 A 添加一个元素。实现方法:将新元素 num 插入至 B ,再将 B 堆顶元素插入至 A
当 m != n(即 N 为 奇数):需向 B 添加一个元素。实现方法:将新元素 numnum 插入至 A ,再将 A 堆顶元素插入至 B
(假设插入数字 num 遇到情况 1. 。由于 num 可能属于 “较小的一半” (即属于 B ),因此不能将 nums 直接插入至 A 。而应先将 num 插入至 B ,再将 B 堆顶元素插入至 A 。这样就可以始终保持 A 保存较大一半、 B 保存较小一半。)

findMedian() 函数:
当 m=n( N 为 偶数):则中位数为 ( A 的堆顶元素 + B 的堆顶元素 )/2。
当 m !=n( N 为 奇数):则中位数为 A 的堆顶元素。

复杂度分析:
时间复杂度O(logN):查找中位数 O(1) : 获取堆顶元素使用 O(1) 时间;添加数字 O(logN) : 堆的插入和弹出操作使用 O(logN) 时间。
空间复杂度 O(N) : 其中 N 为数据流中的元素数量,小顶堆 A 和大顶堆 B 最多同时保存 N 个元素。

class MedianFinder {
public:
    priority_queue<int,vector<int>,greater<int>> minheap; 
    priority_queue<int,vector<int>,less<int>> maxheap;
    /** initialize your data structure here. */
    MedianFinder() {
        
    }
    
    void addNum(int num) {
        if(minheap.size()==maxheap.size()){
            maxheap.push(num);
            int top=maxheap.top();
            maxheap.pop();
            minheap.push(top);
        }
        else{
            minheap.push(num);
            int top=minheap.top();
            minheap.pop();
            maxheap.push(top);
        }
    }
    
    double findMedian() {
        double result=0.0;
        int size=minheap.size();
        if(size==0){
            return 0.0;
        }
        //这里必须是/2.0,不可以是/2
        if(minheap.size()==maxheap.size()){
            result=(minheap.top()+maxheap.top())/2.0;
        }
        else{
            result=minheap.top();
        }
        return result;
    }
};

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder* obj = new MedianFinder();
 * obj->addNum(num);
 * double param_2 = obj->findMedian();
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值