注:
题目:
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
示例 1:
输入:
[“MedianFinder”,“addNum”,“addNum”,“findMedian”,“addNum”,“findMedian”]
[[],[1],[2],[],[3],[]]
输出:[null,null,null,1.50000,null,2.00000]
示例 2:
输入:
[“MedianFinder”,“addNum”,“findMedian”,“addNum”,“findMedian”]
[[],[2],[],[3],[]]
输出:[null,null,2.00000,null,2.50000]
限制:
最多会对 addNum、findMedian 进行 50000 次调用。
题解:
解题思路:
针对本题,根据以上思路,可以将数据流保存在一个列表中,并在添加元素时 保持数组有序 。此方法的时间复杂度为 O(N) ,其中包括: 查找元素插入位置 O(logN) (二分查找)、向数组某位置插入元素 O(N) (插入位置之后的元素都需要向后移动一位)。
借助 堆 可进一步优化时间复杂度。
建立一个 小顶堆 A 和 大顶堆 B ,各保存列表的一半元素,且规定:
A 保存 较大 的一半,为升序数组。长度为 N/2( NN 为偶数)或 N/2+1( N 为奇数);
B 保存 较小 的一半,为降序数组,长度为 N/2( N 为偶数)或 N/2-1( N 为奇数);
随后,中位数可仅根据 A, B 的堆顶元素计算得到。
算法流程:
设元素总数为 N = m + n ,其中 m 和 n 分别为 A 和 B 中的元素个数。
addNum(num) 函数:
当 m = n(即 N 为 偶数):需向 A 添加一个元素。实现方法:将新元素 num 插入至 B ,再将 B 堆顶元素插入至 A ;
当 m != n(即 N 为 奇数):需向 B 添加一个元素。实现方法:将新元素 numnum 插入至 A ,再将 A 堆顶元素插入至 B ;
(假设插入数字 num 遇到情况 1. 。由于 num 可能属于 “较小的一半” (即属于 B ),因此不能将 nums 直接插入至 A 。而应先将 num 插入至 B ,再将 B 堆顶元素插入至 A 。这样就可以始终保持 A 保存较大一半、 B 保存较小一半。)
findMedian() 函数:
当 m=n( N 为 偶数):则中位数为 ( A 的堆顶元素 + B 的堆顶元素 )/2。
当 m !=n( N 为 奇数):则中位数为 A 的堆顶元素。
复杂度分析:
时间复杂度O(logN):查找中位数 O(1) : 获取堆顶元素使用 O(1) 时间;添加数字 O(logN) : 堆的插入和弹出操作使用 O(logN) 时间。
空间复杂度 O(N) : 其中 N 为数据流中的元素数量,小顶堆 A 和大顶堆 B 最多同时保存 N 个元素。
class MedianFinder {
public:
priority_queue<int,vector<int>,greater<int>> minheap;
priority_queue<int,vector<int>,less<int>> maxheap;
/** initialize your data structure here. */
MedianFinder() {
}
void addNum(int num) {
if(minheap.size()==maxheap.size()){
maxheap.push(num);
int top=maxheap.top();
maxheap.pop();
minheap.push(top);
}
else{
minheap.push(num);
int top=minheap.top();
minheap.pop();
maxheap.push(top);
}
}
double findMedian() {
double result=0.0;
int size=minheap.size();
if(size==0){
return 0.0;
}
//这里必须是/2.0,不可以是/2
if(minheap.size()==maxheap.size()){
result=(minheap.top()+maxheap.top())/2.0;
}
else{
result=minheap.top();
}
return result;
}
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/