Python公交站点数据习题

该博客介绍了使用Python处理公交站点数据的过程,包括合并GPS文件、提取特定路线数据、进行散点图绘制、聚类分析、时段划分统计上下车人数、构建下车概率矩阵,并最终形成OD矩阵,展示了数据在公交交通中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#读取gps文件夹下面的所有文件合并为一个数据框

from pylab import mpl
import pandas as pd
mpl.rcParams['font.sans-serif'] = ['SimHei']
import os
path='D:/Rpython/file/time/'  #文件夹下有多个文件的读取
list1=os.listdir(path)
import matplotlib.pyplot as plt
data1=pd.DataFrame()
for i in list1:
    data=pd.read_csv(path+i,engine='python')
    data1=pd.concat([data1,data])

#提取68路的数据

temp=data1[data1.线路名称=='68路']

#画出散点图

plt.figure()
plt.scatter(temp.iloc[:,0],temp.iloc[:,1]) #选取的是公交车经度列和纬度列
plt.show()

#聚类找到30个站,将虚拟类标签转换为实际站点

def cengci(temp,num):
    from scipy.cluster import hierarchy
    Z = hierarchy.linkage(temp, method ='ward',metric='euclidean')   #(数据,层次聚类的方法,度量:欧氏距离)
    label = hierarchy.cut_tree(Z, height=num)  # 取固定位置的类别数
    label = label.reshape(label.size, )
    return (label)
from Cengci import ceng
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值