DFS - Red and Black

There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles. 

Write a program to count the number of black tiles which he can reach by repeating the moves described above. 
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20. 

There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows. 

'.' - a black tile 
'#' - a red tile 
'@' - a man on a black tile(appears exactly once in a data set) 
Output
For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself). 
Sample Input
6 9
....#.
.....#
......
......
......
......
......
#@...#
.#..#.
11 9
.#.........
.#.#######.
.#.#.....#.
.#.#.###.#.
.#.#..@#.#.
.#.#####.#.
.#.......#.
.#########.
...........
11 6
..#..#..#..
..#..#..#..
..#..#..###
..#..#..#@.
..#..#..#..
..#..#..#..
7 7
..#.#..
..#.#..
###.###
...@...
###.###
..#.#..
..#.#..
0 0
Sample Output
45
59
6
13
题意: .为黑砖,#为红砖(围墙),@为一个人的初始位置,求此人在迷宫中能走的所有黑砖个数(不可越过围墙)

思路:运用DFS走一遍,并且计数。

#include <bits/stdc++.h>
using namespace std;
char a[30][30]; //绘制地图
int W,H,sum;
int dir[4][2]= {0,1,0,-1,1,0,-1,0}; //上下左右四个方位
bool checkedge (int h,int w)  //条件之一,检查是否越界
{
    if(h>=1&&h<=H&&w>=1&&w<=W)
        return 1;
    else return 0;
}
void dfs(int h,int w)
{
    sum++;    //每到一个位置则步数加一,初始进入函数即初始步数也算为了加1
    a[h][w]='#';  //走过的位置不再重复,位置换为墙
    for(int i=0; i<4; i++)   //上下左右四个方位检查能否生成节点
    {
        if(checkedge(h+dir[i][0],w+dir[i][1])&&a[h+dir[i][0]][w+dir[i][1]]=='.')  //检查生成的下一个节点是否满足条件
            dfs(h+dir[i][0],w+dir[i][1]);  //满足则进入下一步(下一深度)

    }
    return ;
}
int main()
{
    int xx,yy;
    char ch;
    while(~scanf("%d%d",&W,&H)&&W!=0&&H!=0)
    {
        sum=0;
        int i,j;
        scanf("%c",&ch);
        for( i=1; i<=H; i++)
        {
            for( j=1; j<=W; j++)
            {
                scanf("%c",&ch);
                a[i][j]=ch;
                if(ch=='@')    //记录初始坐标
                {
                    xx=i,yy=j;
                }
            }
            scanf("%c",&ch);
        }
        dfs(xx,yy);   //赋入初始坐标
        printf("%d\n",sum);
    }
    return 0;
}


"black and red problem"通常是指图论中的“黑红树”(Black-Red Tree),这是一种用于实现二叉查找树的数据结构。Python中的深度优先搜索(Depth-First Search,DFS)可以用来遍历这种特殊的树。 在处理这类问题的DFS解法中,你需要递归地访问每个节点,并维护两个颜色规则:每个节点要么是红色,要么是黑色,且根节点必须是黑色。两个额外的规则是: 1. 每个叶节点(NIL节点)都是黑色的。 2. 如果一个节点是红色的,则其子节点必须是黑色。 DFS通常会采用一种叫做预置颜色(preorder coloring)的策略,即先访问左子树,然后访问右子树。在遍历时,需要确保每次遇到红色节点时都进行了正确的调整,以保持树的平衡和黑色节点的性质。 下面是一个简单的Python DFS解法示例,假设有一个名为`Node`的类表示树节点,包含`color`(颜色)和`left`, `right`属性: ```python class Node: def __init__(self, color): self.color = color self.left = None self.right = None def is_valid_b_and_r(node): if node is None: return True # 检查当前节点是否违反规则 if node.color != 'red': return is_valid_b_and_r(node.left) and is_valid_b_and_r(node.right) # 深度检查子节点的颜色和位置 left_red = node.left and node.left.color == 'red' right_red = node.right and node.right.color == 'red' # 父亲节点为红色,子节点不能同时为红色 if left_red and right_red: return False # 深入左子树或右子树并检查它们是否有效 if left_red: return is_valid_b_and_r(node.left.left) and is_valid_b_and_r(node.left.right) elif right_red: return is_valid_b_and_r(node.right.left) and is_valid_b_and_r(node.right.right) # 如果到达这里说明所有子节点都不是红色 return True # 示例用法 root = ... # 创建一个代表树的根节点 if is_valid_b_and_r(root): print("树满足black and red规则") else: print("树不满足black and red规则") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值