collections模块

本文深入探讨了Python标准库中的collections模块,介绍了namedtuple、defaultdict、deque、Counter、OrderedDict和ChainMap等高级数据结构的特性和应用实例,帮助读者理解和掌握这些数据类型的使用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、ChainMap、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

6.ChainMap:把多个字典连起来,当成一个字典操作

一、namedtuple

tuple:元组不仅仅是不可变的列表

元组拆包:
 

# 元组拆包
a = (1, 2, 3, 4, 5)
*name, num = a #用* 处理不需要的元素
print(num)
tuple是不可变类型,例如,一个点的二维坐标就可以表示成:
p=(1,2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时,namedtuple就派上了用场:

from collections import *

# namedtuple: 生成可以使用名字来访问元素内容的tuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(1, 2)
print(p.x)
>>>1

二、defaultdict

有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。

使用dict:

values = [11, 22, 33, 44, 55, 66, 77, 88, 99, 90]

my_dict = {}

for value in values:
    if value > 66:
        if my_dict.get('k1'):
            my_dict['k1'].append(value)
        else:
            my_dict['k1'] = [value]
    else:
        if my_dict.get('k2'):
            my_dict['k2'].append(value)
        else:
            my_dict['k2'] = [value]
print(my_dict)

使用dict会存在一个问题,当key不存在的时候,会报错。

使用defaultdict:
 

from collections import defaultdict

values = [11, 22, 33, 44, 55, 66, 77, 88, 99, 90]

my_dict = defaultdict(list)

for value in values:
    if value > 66:
        my_dict['k1'].append(value)
    else:
        my_dict['k2'].append(value)
print(my_dict)

key不存在时,不会报错,返回一个默认值。

三、deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

from collections import deque

q = deque([1,2,3,4,5])  # 传入可迭代对象,可用列表,字符串,元组
q.append('x')
q.appendleft('y')
print(q)

deque除了实现list的append()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

四、Counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

from collections import Counter

# 统计每个文件中每个字符出现的次数
with open('test.txt', 'r') as f:
    content = f.readline()
    c = Counter(content)
print(c)

五、OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。如果要保持Key的顺序,可以用OrderedDict

from collections import OrderedDict

d = dict([('a', 1), ('b', 2), ('c', 3)])
print(d)
od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
# print(od.pop('a'))  #弹出a
od.move_to_end('a')  # 把a放到最后
print(od)

六、ChainMap

把字典连起来,访问多个dict,像访问一个dict一样
from collections import ChainMap

# ChainMap

a = {'tian': 6}
b = {'chen': 'beauty'}
new_dict = ChainMap(a, b)  # 把字典连起来,访问多个dict,像访问一个dict一样
print(new_dict.maps) #以列表格式输出
for key, value in new_dict.items():  # 进行遍历,重复的key只出现一次
    print(key, value)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值