时间复杂度

博客介绍了算法时间复杂度的定义,即算法执行时间的增长率和f(n)的增长率相同,记作T(n)=O(f(n))。还阐述了推导大O阶的方法,包括用常数1取代加法常数、保留最高阶项、去除最高阶项相乘的常数,最后给出常见时间复杂度的排序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间复杂度定义

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n)。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

一顿头晕眼花的解释。就记做O()

推导大O阶方法

1用常熟1取代运行时间中的所有加法常数

2.在修改后的运行次数函数中,只保留最高阶项

3.如果最高阶项存在且不是1,则去除与这个项相乘的常数

得到的结果就是大O阶

 

常见的时间复杂度的排序

O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)<O(2^n)<O(n!)<O(n^n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值