本文始发于个人公众号:TechFlow,原创不易,求个关注
今天是高等数学专题的第8篇文章,今天的内容是不定积分。
我之前的高数老师曾经说过,高等数学就是大半本的微积分加上一些数列和极限的知识。而微积分当中,积分相关又占据了大半江山。微积分之所以重要并不是因为它的比重大、容量多,而是因为它常用。几乎所有理工科的课本上都有微积分的公式,原因也很简单,当年这些科学家在研究未知事物或者是进行计算的时候,大量使用了微积分作为工具。这也是我们必须学它的原因。
原函数
我一直都觉得微积分这个名字起得很好,微积分是微分和积分的合称。微分是通过宏观研究微观,而积分恰恰相反则是通过微观获取宏观。因此从某种意义上来说,我们可以将积分看成是微分的反面。
微分对应的是极限,在函数当中,我们通过让Δx\Delta xΔx趋近于0研究函数的变化情况。当Δx\Delta xΔx趋向于0时,我们获得的函数变化率就是函数的导数,这也是导数公式的由来:
f′(x0)=limΔx→0f(x0+Δx)−f(x0)Δx\displaystyle f'(x_0)=\lim_{\Delta x \to 0}\frac{f(x_0+\Delta x) - f(x_0)}{\Delta x}f′(x0)=Δx→0limΔxf(x0+Δx)−f(x0)
我们从微分的角度来看积分,也就是说我们来逆向思考这个过程。如果说我们获得的导数是f′(x)f'(x)f′(x),那么求导之前的函数f(x)会是什么呢?在这个问题当中,求导之前的函数称为原函数,我们写成F(x),如果F(x)是f(x)的原函数,那么它应该满足对于任意的x∈Ix \in Ix∈I,都有F′(x)=f(x)F'(x) = f(x)F′(x)=f(x)。
比如说因为f(x)=x2f(x) = x^2f(x)=x2的导数是2x,所以x2x^2x2