高等数学——微积分中的不定积分

本文介绍了高等数学中的不定积分概念,包括原函数、不定积分的简单性质和基本积分表。通过理解导数与原函数的逆运算关系,探讨了原函数存在的条件,并举例说明了一个函数可以有无限多个原函数,这正是不定积分中“不定”的含义。此外,文中还总结了不定积分的一些简单性质,为后续的实际计算提供了便利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文始发于个人公众号:TechFlow,原创不易,求个关注


今天是高等数学专题的第8篇文章,今天的内容是不定积分。

我之前的高数老师曾经说过,高等数学就是大半本的微积分加上一些数列和极限的知识。而微积分当中,积分相关又占据了大半江山。微积分之所以重要并不是因为它的比重大、容量多,而是因为它常用。几乎所有理工科的课本上都有微积分的公式,原因也很简单,当年这些科学家在研究未知事物或者是进行计算的时候,大量使用了微积分作为工具。这也是我们必须学它的原因。

原函数

我一直都觉得微积分这个名字起得很好,微积分是微分和积分的合称。微分是通过宏观研究微观,而积分恰恰相反则是通过微观获取宏观。因此从某种意义上来说,我们可以将积分看成是微分的反面。

微分对应的是极限,在函数当中,我们通过让Δx\Delta xΔx趋近于0研究函数的变化情况。当Δx\Delta xΔx趋向于0时,我们获得的函数变化率就是函数的导数,这也是导数公式的由来:

f′(x0)=lim⁡Δx→0f(x0+Δx)−f(x0)Δx\displaystyle f'(x_0)=\lim_{\Delta x \to 0}\frac{f(x_0+\Delta x) - f(x_0)}{\Delta x}f(x0)=Δx0limΔxf(x0+Δx)f(x0)

我们从微分的角度来看积分,也就是说我们来逆向思考这个过程。如果说我们获得的导数是f′(x)f'(x)f(x),那么求导之前的函数f(x)会是什么呢?在这个问题当中,求导之前的函数称为原函数,我们写成F(x),如果F(x)是f(x)的原函数,那么它应该满足对于任意的x∈Ix \in IxI,都有F′(x)=f(x)F'(x) = f(x)F(x)=f(x)

比如说因为f(x)=x2f(x) = x^2f(x)=x2的导数是2x,所以x2x^2x2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值