Anaconda配置新环境并在Pycharm中使用

本文详细介绍如何在Anaconda环境下创建并配置TensorFlow环境,包括使用清华镜像加速下载,安装特定版本的TensorFlow,以及如何在Pycharm中导入conda环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面建立在Anaconda和Pycharm都已经安装完成的基础上,Anaconda的环境变量配置参见:
在这里插入图片描述
打开Anaconda的Environment,里面会有一个自带的base(root)环境,下面我们根据实际需要自己新建一个环境:(参考:Anaconda (conda 4.5.11,python3.7版本)安装tensorflow经验
1.在cmd中创建 python3.6 版本的TensorFlow环境:conda create -n tensorflow python=3.6
如果发现下载速度过慢,可以尝试添加镜像:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
在这里插入图片描述
2.激活 python3.6 的 名为“tensorflow” 的环境:activate tensorflow

3.使用清华的源安装 tensorflow:pip install tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple/
可能会出现 Read time out 错误,多试几次即可
在这里插入图片描述
如果需要安装特定版本的tensorflow:pip install tensorflow==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/,会自动卸载之前版本的tensorflow。

成功安装结果如下:
在这里插入图片描述
注意Python3.6目前最高支持Tensorflow2.0版本(2.1版本会提示DLL找不到模块错误)

4.输入import tensorflow as tf测试,如果不报错说明已经安装完成

5.将conda环境导入到Pycharm中,过程如下:
在这里插入图片描述
在这里插入图片描述
选择Anaconda安装目标下的envs/虚拟环境名字/python.exe,即可导入到Pycharm中
注意,使用conda环境的话,更新包的时候只能用conda命令行进行安装,无法使用Pycharm自带的工具。

<think>好的,用户想了解如何使用Anaconda创建虚拟环境,PyCharm配置。我需要根据提供的引用资料来整理步骤,确保信息准确。首先,得先确认用户是否已经安装了Anaconda,可能需要先提一下安装步骤,但根据引用3和4,引用里提到安装Anaconda的部分,所以可能应该先简要说明安装,然后创建环境。不过用户的问题主要是创建和配置,可能用户已经安装好了,所以重点放在创建和配置步骤。 接下来,创建虚拟环境的命令是conda create -n your_env_name python=X.X,这点引用4里有详细说明。然后激活环境的命令是conda activate env_name,退出则是conda deactivate,这部分引用2和引用1有提到。安装包的部分可以用conda或pip,比如PyTorch或者requirements.txt,引用1提到使用conda安装PyTorch和pip安装requirements.txt,可能需要提到这些可选步骤。 然后在PyCharm配置的步骤,引用3和引用1都提到了。需要打开项目,进入设置,找到Python解释器,添加Conda环境,选择现有环境,找到刚才创建的envs目录下的python.exe。需要详细说明每一步的路径选择,确保用户能正确找到解释器位置。 需要检查是否有遗漏的步骤,比如是否要提前打开Anaconda Prompt或者配置环境变量?引用2提到要在cmd里处理命令,前提是配置好环境变量。所以可能需要提醒用户确保conda命令可用,如果不行的话,可能需要配置PATH或者使用Anaconda Prompt。 最后,生成相关问题,需要根据内容提出相关问题,比如如何管理环境中的包,不同项目如何使用不同环境,常见错误处理等。需要确保问题相关且有参考价值。 另外,格式方面要注意行内数学公式用$...$,但这里可能用不到数学公式,所以可能不用处理。独立公式也没有,所以主要关注步骤的正确性和引用标注。每个步骤的末尾要自然添加引用标记,比如创建环境的步骤来自引用4,配置PyCharm的部分来自引用3和引用1。 需要确保语言口语化,但因为是中文回答,保持清晰分步即可。可能还需要注意用户可能遇到的常见问题,比如环境未正确识别,路径错误等,但用户问题中没有提到,所以可能不需要展开,但生成的问题中可以包含这些。</think>### 如何用Anaconda创建虚拟环境PyCharm配置? 以下是详细步骤说明,帮助您完成从创建虚拟环境到PyCharm配置的全流程: --- #### **一、使用Anaconda创建虚拟环境** 1. **安装Anaconda(如未安装)** 从Anaconda官网下载安装适合您操作系统的版本。安装完成后,确保`conda`命令可在终端或命令行中调用[^3]。 2. **创建虚拟环境** 在终端(Windows使用Anaconda Prompt或cmd,macOS/Linux使用终端)输入以下命令: ```bash conda create -n your_env_name python=X.X ``` - `your_env_name`:自定义环境名称(如`my_project`) - `X.X`:指定Python版本(如`3.8`) 此命令会在Anaconda安装目录的`envs`文件夹下生成对应环境文件[^4]。 3. **激活虚拟环境** ```bash conda activate your_env_name ``` 激活后,终端的提示符会显示当前环境名称。 4. **安装依赖包(可选)** - 使用`conda install package_name`或`pip install package_name`安装所需包。 - 批量安装依赖:将依赖写入`requirements.txt`后运行`pip install -r requirements.txt`[^1]。 5. **退出虚拟环境** ```bash conda deactivate ``` --- #### **二、在PyCharm配置虚拟环境** 1. **打开PyCharm进入项目** 选择需要配置环境的项目。 2. **打开解释器设置** - 点击菜单栏的 **File > Settings**(Windows/Linux)或 **PyCharm > Preferences**(macOS)。 - 选择 **Project: [项目名] > Python Interpreter**。 3. **添加Conda环境** - 点击右上角齿轮图标,选择 **Add**。 - 在弹出的窗口中选择 **Conda Environment**,勾选 **Existing environment**。 - 点击右侧的 **…** 按钮,浏览至Anaconda安装目录下的`envs/your_env_name/python.exe`(Windows)或`envs/your_env_name/bin/python`(macOS/Linux)[^3]。 4. **验证配置** 确认PyCharm中已显示新添加的解释器,检查依赖包是否加载成功。 --- #### **三、示意图** ```plaintext Anaconda环境路径示例(Windows): C:\Users\YourName\Anaconda3\envs\my_project\python.exe ``` --- #### **注意事项** - **环境变量配置**:若终端无法识别`conda`命令,需将Anaconda的安装路径(如`C:\Anaconda3\Scripts`)添加到系统环境变量`PATH`中[^2]。 - **多项目管理**:建议为每个项目单独创建虚拟环境,避免依赖冲突。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值