深入解析 LLM 智能体架构:从路由器到自定义框架的全栈实践

在开发大语言模型应用时,我们常常面临这样的困境:固定的控制流难以应对复杂场景,明明框架提供了强大的工具调用能力,却只能实现简单的单步响应。是架构设计限制了潜力?还是我们对智能体的理解不够深入?今天我们就来系统梳理 LangGraph 中的智能体架构体系,从基础的路由器到高级的自定义框架,聊聊如何让 LLM 真正拥有自主决策能力,以及这些架构在实际场景中的落地实践。

一、智能体架构的核心价值与分类

1.1 为什么需要智能体架构

传统 LLM 应用就像预设好剧本的演员,只能按照固定流程回应。而智能体架构则赋予 LLM"导演" 的能力 —— 让模型自主决定调用工具的顺序、判断信息是否足够、甚至规划多步解决方案。这种灵活性在以下场景尤为重要:

  • 客服系统需要根据问题类型路由到不同专员
  • 数据分析工具需要动态决定调用哪些计算模块
  • 复杂任务需要分步骤逐步完成

1.2 架构分类与控制层级

智能体架构本质上是赋予 LLM 不同程度的控制权,根据控制复杂度可分为三大类:

  1. 路由器(Router):基础决策层,只能在有限选项中做单一选择
  2. 工具调用智能体:中级控制层,支持多步决策和工具组合
  3. 自定义架构:高级管理层,包含人在回路、并行处理等复杂机制

这些架构并非孤立存在,而是可以组合使用,形成层次化的智能体系统。

二、基础架构:路由器与结构化输出

2.1 路由器的工作原理

路由器就像智能体的 "交通警察",负责将用户请求引导到合适的处理路径。它的核心特点是:

  • 决策范围有限:仅能在预定义的选项中选择
  • 单次决策:不支持多步流程
  • 轻量化:计算开销小,适合初步分类

典型应用场景是客服系统的问题分诊:当用户询问 "我的订单什么时候到",路由器会识别为 "物流查询",并转交给对应的处理模块。

2.2 结构化输出:路由器的 "翻译官"

路由器要准确工作,离不开结构化输出的支持。这就像我们让孩子用特定格式写作文,LLM 需要按照预设模式生成响应。实现方式包括:

  • 提示工程:在系统提示中明确格式要求

    plaintext

    请用JSON格式返回分类结果,示例:{"category": "物流查询", "priority": "normal"}
    
  • 输出解析器:从自然语言中提取结构化数据
  • 工具调用:利用 LLM 内置的函数调用能力

结构化输出的关键价值在于:让机器能够可靠地解析 LLM 的决策,避免歧义。例如在电商场景中,确保 "红色 M 码 T 恤" 被正确解析为 {"color": "red", "size": "M", "item": "T 恤"}。

三、进阶架构:工具调用智能体与 ReAct 模式

3.1 工具调用智能体的核心能力

相比路由器,工具调用智能体就像 "会使用工具的工匠",具备两大突破:

  • 多步决策:不再是单次选择,而是能制定行动计划
  • 工具交互:可以调用外部系统完成实际工作

这种架构的典型代表是 ReAct 模式,它整合了三个核心要素:

  1. 工具调用:按需选择合适的工具
  2. 记忆:保存历史信息供后续步骤使用
  3. 规划:制定多步执行计划

3.2 ReAct 架构的工作流程

ReAct 的运行机制可以理解为一个 "思考 - 行动 - 观察" 的循环:

  1. 思考阶段:LLM 分析用户请求,决定是否需要调用工具
  2. 行动阶段:选择并调用合适的工具
  3. 观察阶段:获取工具返回结果,作为下一步决策的依据
  4. 循环终止:当 LLM 认为信息足够时,整理结果并回复用户

以天气查询为例,完整流程可能是:

plaintext

用户:旧金山明天天气如何?
LLM:需要调用天气工具
行动:调用get_weather工具,参数city="San Francisco"
观察:工具返回温度22℃,多云
LLM:信息足够,无需更多工具
回复:旧金山明天22℃,多云

3.3 在 LangGraph 中实现工具调用

LangGraph 提供了便捷的工具调用支持,核心步骤包括:

  1. 定义工具函数

python

运行

def get_weather(city: str) -> str:
    """获取指定城市的天气"""
    # 实际应用中会调用天气API
    return f"{city}的天气是晴朗,温度25℃"

  1. 绑定工具到模型

python

运行

from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI

model = ChatOpenAI(model_name="gpt-4")
agent = create_react_agent(
    model=model,
    tools=[get_weather],
    prompt="你是一个天气查询助手"
)

  1. 执行并获取结果

python

运行

response = agent.invoke({
    "messages": [{"role": "user", "content": "旧金山天气如何"}]
})
print(response["messages"][-1]["content"])

四、智能体的 "记忆系统":短期与长期存储

4.1 短期记忆:会话内的信息传递

短期记忆就像我们的 "工作记忆",用于保存当前会话中的临时信息:

  • 作用范围:仅在一次会话内有效
  • 典型应用:保存多轮对话中的上下文
  • 技术实现:通过状态(State)和检查点(Checkpointer)实现

在客服场景中,短期记忆可以保存用户之前提到的订单号,避免重复询问。LangGraph 中的实现方式:

python

运行

from langgraph.prebuilt import create_react_agent
from langgraph.checkpoint.memory import InMemorySaver

# 配置检查点用于保存状态
checkpointer = InMemorySaver()
agent = create_react_agent(
    model=...,
    tools=...,
    checkpointer=checkpointer
)

# 调用时指定thread_id标识会话
response1 = agent.invoke(
    {"messages": ["我的订单号是12345"]},
    config={"configurable": {"thread_id": "user_001"}}
)
response2 = agent.invoke(
    {"messages": ["这个订单什么时候发货"]},
    config={"configurable": {"thread_id": "user_001"}}
)

4.2 长期记忆:跨会话的数据持久化

长期记忆则如同我们的 "知识库",用于保存跨会话的重要信息:

  • 作用范围:在不同会话间共享
  • 典型应用:保存用户偏好、历史订单等
  • 技术实现:通过存储(Store)接口实现

例如电商智能体可以记住用户的收货地址,下次购买时无需重新输入。LangGraph 中的长期记忆操作:

python

运行

from langgraph.config import get_store
from langgraph.store.memory import InMemoryStore

# 初始化存储
store = InMemoryStore()

# 保存用户偏好
store.put(
    ("users", "001"),
    {"preference": {"theme": "dark", "language": "zh"}}
)

# 在工具中读取记忆
def get_user_preference(user_id: str) -> str:
    store = get_store()
    preference = store.get(("users", user_id))
    return f"你的偏好设置是:{preference.value}"

五、规划能力:让智能体学会 "分步思考"

规划是智能体解决复杂问题的关键能力,它使 LLM 能够:

  • 将大目标分解为多个子任务
  • 确定任务执行顺序
  • 判断每个步骤的必要性

规划的实现本质上是一个循环决策过程:

  1. LLM 分析当前状态,确定是否需要行动
  2. 选择下一步操作(调用工具或直接回答)
  3. 执行操作并获取结果
  4. 评估结果是否接近目标
  5. 重复直到目标达成

以旅行规划为例,智能体可能需要先查询目的地天气,再推荐景点,最后提供交通建议,这一系列步骤就是规划的体现。在 LangGraph 中,规划能力内置于工具调用智能体的循环机制中,无需额外开发。

六、高级架构:自定义与优化技术

6.1 人在回路:关键决策的人工审核

在涉及敏感操作时,我们需要 "人在回路" 机制,就像银行的大额转账需要人工复核:

  • 应用场景:金融交易、个人信息修改、高价值操作
  • 实现方式:通过 interrupt () 函数暂停流程等待审核
  • LangGraph 实现

python

运行

from langgraph.types import interrupt

def transfer_money(amount: float, to_account: str) -> str:
    # 触发人工审核
    review = interrupt(
        f"即将转账{amount}元到账户{to_account},请确认"
    )
    if review["approved"]:
        # 执行转账
        return "转账成功"
    else:
        return "转账已取消"

6.2 并行化:提升复杂任务处理效率

对于可以分解的任务,并行化处理能大幅提升效率,类似工厂的流水线作业:

  • 适用场景:多数据源查询、批量数据处理
  • LangGraph 支持:通过 Send API 实现并行调用
  • 典型应用:同时查询多个电商平台的价格

6.3 子图:构建层次化智能体系统

子图允许我们将复杂系统拆分为多个独立模块,就像搭建积木:

  • 核心价值:模块化设计、隔离状态、简化调试
  • 通信方式:通过状态模式中的重叠键实现数据共享
  • 应用场景:大型客服系统中,不同产品线使用独立子图

6.4 反思机制:让智能体学会自我改进

反思是智能体进阶的关键,就像学生做完题后检查对错:

  • 实现方式:LLM 自评、外部反馈、确定性验证
  • 典型应用:代码生成后的语法检查、回答准确性评估
  • LangGraph 示例:通过预构建的评估工具实现反思

七、架构选择与实践建议

7.1 架构选型指南

  • 路由器:适用于简单分类场景,如问题分诊、初步筛选
  • 工具调用智能体:适合需要调用外部工具的中等复杂度任务
  • 自定义架构:适用于高复杂度场景,如多步骤业务流程、敏感操作

7.2 性能优化要点

  • 记忆管理:定期清理过期短期记忆,优化长期记忆查询效率
  • 规划优化:设置合理的循环终止条件,避免无效工具调用
  • 并行策略:根据资源情况调整并行度,避免过载

7.3 落地路径建议

  1. 从路由器开始,实现基础的请求分类
  2. 引入工具调用智能体,增加实际操作能力
  3. 加入记忆机制,提升多轮对话体验
  4. 根据业务需求,逐步添加人在回路、并行化等高级功能

八、总结与技术展望

通过本文的解析,我们系统了解了智能体架构的演进路径 —— 从简单的路由器到具备规划、记忆能力的复杂系统,再到支持人工审核和并行处理的高级框架。LangGraph 提供的全栈支持,让我们能够根据业务需求灵活选择和定制架构。

如果本文对你有帮助,别忘了点赞收藏,关注我,一起探索更高效的开发方式~

内容概要:本文档详细介绍了基于Simscape的弹簧隔振系统建模与优化设计的大作业。作业背景在于机械工程领域的振动控制技术,尤其是弹簧隔振系统在汽车悬架和精密仪器隔振等方面的应用。文档的任务包括使用Simscape Multibody建立包含质量块、弹簧、阻尼器和基础激励源的物理模型,并添加传感器测量质量块的位移、速度和加速度。参数设定部分明确了质量块质量、弹簧刚度、阻尼系数、激励幅值和激励频率的初始值范围。动态分析涵盖了自由振动分析、简谐激励响应和传递率分析,具体包括计算固有频率、测量振动衰减周期、记录稳态响应振幅、绘制幅频特性曲线以及分析不同阻尼比对传递率的影响。最后,参数优化的目标是在5-15Hz频段内使传递率小于0.2,优化变量为弹簧刚度和阻尼系数,并使用合适的优化函数进行约束优化。 适合人群:机械工程专业学生或从事振动控制相关工作的技术人员。 使用场景及目标:①学习如何使用MATLAB/Simscape建立物理模型并进行仿真分析;②掌握振动系统的动态特性分析方法;③理解并应用参数优化方法提高隔振效果。 阅读建议:此文档不仅涉及理论分析,还包含详细的建模步骤和优化方法,因此在学习过程中应结合实际操作,按照文档提供的模型和脚本进行实践,同时参考文献资料加深对隔振器发展与作用的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佑瞻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值