【学习笔记】K-近邻算法(KNN)

本文介绍了K-近邻(KNN)算法的基本原理和距离公式,探讨了在电影类型分析中如何运用KNN进行未知类别电影的预测。KNN算法是一种懒惰学习方法,其优点在于简单易懂,无需训练,但同时也存在计算量大、需指定K值等缺点。在实际应用中,K值的选择对分类精度有很大影响。此外,对于数据预处理,KNN可能需要进行特征缩放和编码等操作。最后,文章提到了sklearn库中的KNeighborsClassifier API,用于实现KNN算法,并列举了其关键参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、K-近邻算法(KNN)

#1.1 定义

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

来源:KNN算法最早是由Cover和Hart提出的一种分类算法

1.2 距离公式

两个样本的距离可以通过如下公式计算,又叫欧式距离

距离公式
在这里插入图片描述

2、电影类型分析

假设我们有现在几部电影

其中? 号电影不知道类别,如何去预测?我们可以利用K近邻算法的思想
在这里插入图片描述

2.1 问题

如果取的最近的电影数量不一样?会是什么结果?

2.2 K-近邻算法数据的特征工程处理

结合前面的约会对象数据,分析K-近邻算法需要做什么样的处理

3、K-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)
n_neighbors:int,可选(默认= 5), k_neighbors查询默认使用的邻居数
algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},计算最近邻居的算法,默认auto

4、K-近邻总结

优点:
简单,易于理解,易于实现,无需训练
缺点:
懒惰算法,对测试样本分类时的计算量大,内存开销大
必须指定K值,K值选择不当则分类精度不能保证
使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值