CNN中各结构的闪光点(巧妙构思!)

本文深入剖析了卷积神经网络(CNN)的关键组成部分,包括卷积层的多种类型(如深度分离卷积)、池化层的作用及全连接层的功能,并详细解释了1×1卷积的应用场景与优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 前言

我们知道传统神经网络模型,是由经典的逻辑回归(可以解释为神经元)+其它的非线性的激活函数构成的。

引用多个逻辑回归(神经元)以及激活函数(例如:relu)的原因是——》添加非线性,可以有效的拟合数据(这里也是往往神经网络容易过拟合的原因)。

如果上面不理解的话,可以看这里!

理解完上面之后,我们来看看CNN中的一些闪观点!

2 CNN中各结构的闪光点(巧妙构思!)

2.1 卷积(主要是卷积核)

  1. 标准卷积结构
  2. 反卷积(使用在图像分割中)
  3. 空洞卷积(使用空洞——扩大感受野)
  4. 深度分离卷积(使用1*1的结构,极大减少了参数,使用模型可以训练的更快,有效嵌入!)

我主要讲下深度分离卷积,深度分离卷积主要分为Depthwise卷积,Pointwise卷积两部分。

  • Depthwise卷积
    Depthwise卷积不同于常规的操作,Depthwise convolution的一个卷积核只负责一个通道,即一个通道只被一个卷积核卷积。
  • Pointwise卷积
    Pointwise 卷积运算则是常规的运算,它的卷积核的尺寸为1x1xM,M为需要得到的最终feature map数量,所以这里的卷积运算会将上一步的map在深度方向上进行加权组合,生成新的feature map,总共为M维度,操作方法就是concate,然后再用1x1的卷积形成1维的map(也可以用1x1先卷积,然后将不同feature map进行add)。

2.2 池化

平均池化,最大池化——》可以凸显有效特征的重要性,同时减少了参数

2.3 全连接

引用了大大的权重矩阵,以及非线性的激活函数结构,可以有效拟合数据

3 CNN中的1×1 卷积

作用(例如深度分离卷积中也是使用了这个结构)

  1. 实现跨通道的交互和信息整合
  2. 进行卷积核通道数的降维和升维
  3. 对于单通道feature map 用单核卷积即为乘以一个参数,而一般情况都是多核卷积多通道,实现多个feature map的线性组合
  4. 可以实现与全连接层等价的效果。如在faster-rcnn中用1x1xm的卷积核卷积n(如512)个特征图的每一个位置(像素点),其实对于每一个位置的1x1卷积本质上都是对该位置上n个通道组成的n维vector的全连接操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值