分治法:快速排序与归并排序

本文介绍了分治法在快速排序和归并排序中的应用。通过二分优化的快速排序,提高了算法在最坏情况下的效率,达到接近O(n*logn)的时间复杂度。同时,讲解了如何利用快速排序解决求第K小的数问题。另外,讨论了归并排序在处理逆序对问题时的优势,通过递归和辅助数组降低复杂度,实现高效的逆序对计数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分治法的算法思想:把原问题分成k个较小规模的子问题,对这k个子问题分别求解。如果子问题不够小,那么把每个子问题再划分为规模更小的子问题,直到问题足够小,就很容易求出这些子问题的解,从而求出整个问题的解。

由于分治法的思想与递归的过程几乎一样,所以用递归来实现分治法是理所应当的。

下面介绍两种体现分治法思想的算法:

1.快速排序的二分优化

快速排序是基础的算法,如果不了解快速排序的小伙伴可以去搜索快速排序,有关快速排序的算法网上的资源非常的多。在这里主要是分享一下在实际刷题过程中遇到快排的题,基本上都可以拿二分优化AC。

<1.>为什么要进行二分优化:因为快速排序不稳定,快速排序的模板只是以数列中的第一个或最后一个数为基准数,那么当数列全按降序排列而要求你进行升序排列的时候时间复杂度就会为O(n^2),在做题的时候,当数据规模较大的时候往往会运行超时,要想使得快排的效率稳定就必须对其进行优化。

<2.>算法思路:与二分法的思路一样,选取区间的中点作为基准数,然后进行快排,让i从区间的左边出发,j从区间的右边出发,在i<=j的条件下,进行搜寻,一轮排序的过程跟基础快排一样。但是一轮排序后的结尾需要注意,由于i,j都可能指向中间的基准数进行交换,所以结束的时候,j势必会在i的前面,所以我们再次分配区间的时候就以i,j所在的位置进行左右区间的划分这样做的好处就是不会出现每次基准数都是区间两端的数,从而使得最坏的情况得到优化,使算法的最坏复杂度趋近O(n*logn)。

以此题为例:

题目描述

利用快速排序算法将读入的 N个数从小到大排序后输出。

输入格式

第 1 行为一个正整数 N,第 2行包含 N 个空格隔开的正整数ai ,为你需要进行排序的数,数据保证了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值