Tensorflow: Model parallelism 模型并行计算

当单个GPU无法容纳大型模型时,可以采用model-parallelism。通过将模型的不同部分分配到多个GPU上进行计算,实现TensorFlow模型的并行处理。参考某博主的教程和github代码,可以了解如何利用Distributed TensorFlow在多台机器间分割模型图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在tensorflow官方tutorial上给出了多GPU的用法,但那是基于data-parallelism的计算,主要思想是将数据划分成不同部分,用同一个模型进行计算

但是我在写代码中发现,会出现单个模型过大无法再单个GPU上运行,这时候就需要model-parallelism

上网查找了很多资料后,发现这个博主写的不错,附带了github代码,How to Use Distributed TensorFlow to Split Your TensorFlow Graph Between Multiple Machines

实现起来其实非常简单,只需要将模型划分,让不同的网络层在不同的GPU上计算就可以了

#实现一个[9k,9k,9k]的densenet,前两层在GPU0上训练
#最后一层在GPU1上训练,因为输出层权重矩阵大概是[28k,10k]单个GPU会显示内存不够
def dense_gpu(input, keep_prob):
    units = 9000
    
### 并行计算 API 文档及使用教程 并行计算是现代高性能计算的重要组成部分,涉及多种工具和框架以支持多核、分布式以及异构计算环境。以下是与并行计算相关的几个重要 API 和文档的介绍: #### 1. CUDA 工具包 CUDA 是 NVIDIA 提供的并行计算平台和编程模型,允许开发者利用 GPU 的强大计算能力。CUDA 工具包包含编译器、数学库、调试和优化工具等[^1]。开发者可以参考官方文档学习如何编写和优化 CUDA 程序。以下是一个简单的 CUDA 示例代码,用于输出 "Hello World": ```cpp #include <stdio.h> __global__ void helloFromGPU() { printf("Hello World from GPU!\n"); } int main() { printf("Hello World from CPU!\n"); helloFromGPU<<<1, 10>>>(); cudaDeviceSynchronize(); return 0; } ``` CUDA 官方文档提供了详细的编程指南和 API 参考:[CUDA 编程指南](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html)。 #### 2. PyTorch 并行计算 PyTorch 支持数据并行和模型并行,能够有效利用多 GPU 进行深度学习任务。通过 `torch.nn.DataParallel` 或 `torch.distributed` 模块,可以实现模型参数的并行更新[^2]。以下是一个简单的数据并行示例: ```python import torch import torch.nn as nn import torch.optim as optim # 定义一个简单的模型 model = nn.Linear(10, 1) model = nn.DataParallel(model) # 输入数据 inputs = torch.randn(16, 10) # 前向传播 outputs = model(inputs) print(outputs) ``` 更多详细信息可以参考 PyTorch 官方文档中的并行计算部分:[PyTorch 分布式训练](https://pytorch.org/docs/stable/distributed.html)。 #### 3. TensorFlow 并行配置 TensorFlow 提供了灵活的配置选项来优化 CPU 和 GPU 的并行性能。通过 `tf.ConfigProto` 设置线程池和设备计数,可以控制操作间的并行性和操作内的并行性[^5]。以下是一个配置示例: ```python import tensorflow as tf num_cpu_core = 4 config = tf.ConfigProto( device_count={"CPU": num_cpu_core}, inter_op_parallelism_threads=2, intra_op_parallelism_threads=2, log_device_placement=True ) with tf.Session(config=config) as sess: # 执行 TensorFlow 图 pass ``` TensorFlow 官方文档提供了全面的并行计算指南:[TensorFlow 性能调优](https://www.tensorflow.org/guide/performance/overview)。 #### 4. Joblib 并行计算 Joblib 是 Python 中用于简化并行计算的库,特别适合于科学计算和机器学习任务。其核心组件包括 `Parallel` 和 `delayed`,分别用于初始化并行任务和指定需要并行化的函数[^4]。以下是一个示例: ```python from math import sqrt from joblib import Parallel, delayed results = Parallel(n_jobs=2)(delayed(sqrt)(i ** 2) for i in range(10)) print(results) ``` Joblib 的官方文档提供了丰富的教程和用例:[Joblib 官方文档](https://joblib.readthedocs.io/en/latest/parallel.html)。 #### 5. Dask 并行计算 Dask 是一个灵活的并行计算库,适用于大规模数据处理任务。它支持 DataFrame、数组和延迟计算等多种数据结构[^3]。以下是一个简单的 Dask DataFrame 示例: ```python import dask.dataframe as dd # 读取 CSV 文件 df = dd.read_csv('data.csv') # 并行计算统计量 mean_value = df['column_name'].mean().compute() print(mean_value) ``` Dask 官方文档提供了详细的教程和 API 参考:[Dask 官方文档](https://docs.dask.org/en/stable/). ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值