实时电商大数据采集|1688/淘宝/京东实时商品数据采集API接口

文章介绍了网络电商大数据平台如何通过实时监测主流电商平台的数据,提供当地网商和产品动态的全面掌握服务,同时详细解释了京东的JD商品详情API的使用方法,包括公共参数、请求参数和响应参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有助于全面及时掌握当地电商发展动态

网络电商大数据平台实时监测了100余个主流电商交易平台,并通过所能网络完善的数据清洗体系和数学模型整合各平台数据,可实现全面准确掌握所能网络当地网商(含企业个人)及当地产品在各电商平台的发展动态。
能在秒级完成从数据采集、分析到平台呈现的整个流程,可第一时间为所能网络电商管理部门呈现电商实时交易动态。

京东获得JD商品详情 API 返回值说明

item_get-获得JD商品详情 [查看演示] API接口 注册

jd.item_get

公共参数

名称类型必须描述
keyString调用key(必须以GET方式拼接在URL中)
secretString调用密钥
api_nameStringAPI接口名称(包括在请求地址中)[item_search,item_get,item_search_shop等]
cacheString[yes,no]默认yes,将调用缓存的数据,速度比较快
result_typeString[json,jsonu,xml,serialize,var_export]返回数据格式,默认为json,jsonu输出的内容中文可以直接阅读
langString[cn,en,ru]翻译语言,默认cn简体中文
versionStringAPI版本

请求参数

请求参数:num_iid=10335871600

参数说明:num_iid:JD商品ID

响应参数

Version: Date:

名称类型必须示例值描述

item

item[]0获得JD商品详情
  1. 参数说明

    • 通用参数说明

      • version:API版本
      • key:调用key,测试key:test_api_key
      • api_name:API类型[item_get,item_search]
      • cache:[yes,no]默认yes,将调用缓存的数据,速度比较快
      • result_type:[json,xml,serialize,var_export]返回数据格式,默认为json
      • lang:[cn,en,ru] 翻译语言,默认cn简体中文
    • API:item_get 参数说明: num_iid:宝贝ID

  2. 此API目前支持以下基本接口:

    • item_get 获得1688商品详情
    • item_search 按关键字搜索商品
    • item_search_img 按图搜索1688商品(拍立淘)
    • item_search_suggest 获得搜索词推荐
    • item_fee 获得商品快递费用
    • seller_info 获得店铺详情
    • item_search_shop 获得店铺的所有商品
    • item_password 获得淘口令真实url
    • upload_img 上传图片到1688
    • item_search_seller 搜索店铺列表
    • img2text 图片识别商品接口
    • item_get_app 获取1688app上原数据
    • buyer_order_list 获取购买到的商品订单列表
    • cat_get 获得1688商品分类

图片

图片

引用网络文章开启本课程的开篇: 在大数据分析领域中,传统的大数据分析需要不同框架和技术组合才能达到最终的效果,在人力成本,技术能力和硬件成本上以及维护成本让大数据分析变得成为昂贵的事情。让很多中小型企业非常苦恼,不得不被迫租赁第三方型公司的数据分析服务。  ClickHouse开源的出现让许多想做大数据并且想做大数据分析的很多公司和企业耳目一新。ClickHouse 正是以不依赖Hadoop 生态、安装和维护简单、查询速度快、可以支持SQL等特点在大数据分析领域越走越远。  本课程采用全新的大数据技术栈:Flink+ClickHouse,让你体验到全新技术栈的强,感受时代变化的气息,通过学习完本课程可以节省你摸索的时间,节省企业成本,提高企业开发效率。本课程不仅告诉你如何做项目,还会告诉你如何验证系统如何支撑亿级并发,如何部署项目等等。希望本课程对一些企业开发人员和对新技术栈有兴趣的伙伴有所帮助,如对我录制的教程内容有建议请及时交流。 课程概述:在这个数据爆发的时代,像电商数据量达到百亿级别,我们往往无法对海量的明细数据做进一步层次的预聚合,量的业务数据都是好几亿数据关联,并且我们需要聚合结果能在秒级返回。  那么我们该如何实现这一需求呢?基于Flink+ClickHouse构建电商亿级实时数据分析平台课程,将带领家一步一步从无到有实现一个高性能的实时数据分析平台,该系统以热门的互联网电商实际业务应用场景为案例讲解,对电商数据的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:概况统计、全站流量分析、渠道分析、广告分析、订单分析、运营分析(团购、秒杀、指定活动)等,该系统指标分为分钟级和小时级多时间方位分析,能承载海量数据实时分析,数据分析涵盖全端(PC、移动、小程序)应用。 本课程凝聚讲师多年一线大数据企业实际项目经验,大数据企业在职架构师亲自授课,全程实操代码,带你体验真实的大数据开发过程,代码现场调试。通过本课程的学习再加上老师的答疑,你完全可以将本案例直接应用于企业。 本套课程可以满足世面上绝多数大数据企业级的海量数据实时分析需求,全部代码在老师的指导下可以直接部署企业,支撑千亿级并发数据分析。项目代码也是具有极高的商业价值的,家可以根据自己的业务进行修改,便可以使用。  本课程包含的技术: 开发工具为:IDEA、WebStorm Flink1.9.0 ClickHouseHadoop2.6.0 Hbase1.0.0 Kafka2.1.0 Hive1.0.0 Jmeter(验证如何支撑亿级并发)Docker (虚拟化部署)HDFS、MapReduce Zookeeper SpringBoot2.0.2.RELEASE SpringCloud Finchley.RELEASE Binlog、Canal MySQL Vue.js、Nodejs Highcharts Linux Shell编程  课程亮点: 1.与企业对接、真实工业界产品 2.ClickHouse高性能列式存储数据库 3.大数据热门技术Flink新版本 4.Flink join 实战 5.Flink 自定义输出路径实战 6.全链路性能压力测试 7.虚拟化部署 8.集成指标明细查询 9.主流微服务后端系统 10.分钟级别与小时级别多时间方位分析 11.数据实时同步解决方案 12.涵盖主流前端技术VUE+jQuery+Ajax+NodeJS 13.集成SpringCloud实现统一整合方案 14.互联网大数据企业热门技术栈 15.支持海量数据实时分析 16.支持全端实时数据分析 17.全程代码实操,提供全部代码和资料 18.提供答疑和提供企业技术方案咨询 企业一线架构师讲授,代码在老师的指导下企业可以复用,提供企业解决方案。  版权归作者所有,盗版将进行法律维权。 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值