数据结构与算法--黑马课堂

本文详细探讨了算法的基本概念、五大特性以及Python内置函数的性能分析。介绍了数据结构,包括数据结构和算法的区别,强调了数据结构作为算法的基础。详细讲解了顺序表和链表,特别是单向链表的结构、操作及其时间复杂度。同时,讨论了栈和队列这两种特殊数据结构,以及双端队列的特性。

导入

在这里插入图片描述
在这里插入图片描述
改进 把代码简化
在这里插入图片描述

1.算法的概念

算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。
算法是独立存在的一种解决问题的方法和思想
对于算法而言,实现的语言并不重要,重要的是思想
算法可以有不同的语言描述实现版本(如C描述、C++描述、Python描述等),我们现在是在用Python语言进行描述实现。

1.1算法的五大特性

1.输入:算法具有0个或多个输入
2.输出:算法至少有1个或多个输出
3.有穷性:算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完

4.确定性:算法中的每一步都有确定的含义,不会出现二义性
5.可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成

1.2算法的时间复杂度

单靠时间是不可以的,看执行步骤 —用大O表示法
微课更好的表示,把其他系数忽略掉,只留下主干的
分为最优(最少步骤),最坏(最多 保证多少步才能得出),平均(不用)

1.2.1时间复杂度计算规则

1.基本操作,即只有常数项,认为其时间复杂度为O(1)
2.顺序结构,时间复杂度按加法进行计算
3.循环结构,时间复杂度按乘法进行计算
4.分支结构,时间复杂度取最大值
5.判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
6.在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2.2 pthon内置函数的性能分析

append: 0.6303665000014007
+: 0.8880499999941094
[i for i in range]: 2.8999044000083813
list(range(): 0.09469140000874177
在这里插入图片描述
在这里插入图片描述

## 2.数据结构

2.1概念

相当于是把这些基础的数据类型(int,float,char)封装成内置的定义好的数据结构比如列表、元组、字典,没有定义的就是自己去定义实现Python的扩展数据结构,比如栈,队列等。
数据是一个抽象的概念,将其进行分类后得到程序设计语言中的基本类型。如:int,float,char等。数据元素之间不是独立的,存在特定的关系,这些关系使是结构。数据结构指数据对象中数据元素之间的关系。
Python给我们提供了很多现成的数据结构类型,这些系统自己定义好的,不需要我们自己去定义的数据结构叫做Python的内置数据结构,比如列表、元组、字典。而有些数据组织方式,Python系统里面没有直接定义,需要我们自己去

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值