电动自行车作为我国城市和乡村广泛使用的交通工具,因其轻便、快捷、经济等优点,深受大众喜爱。然而,近年来电动自行车引发的交通事故数量也居高不下,给社会和家庭带来了巨大的损失。数据显示,电动自行车事故死亡人数中,约76%因颅脑损伤致死,而未佩戴安全头盔的驾乘人员死亡风险是佩戴者的3.9倍。此外,违规载人、加装遮阳棚等行为也严重影响了骑行安全。
传统监管模式的局限性
传统的交通监管主要依赖于交警的现场执法,但这种方式存在诸多局限性。一方面,交警的精力和时间有限,难以做到全面覆盖和实时监管;另一方面,受工作时长和天气等因素影响,无法实现全天候、及时有效的管理。尤其是在早晚高峰时段和复杂路况下,违规行为难以得到及时纠正,导致事故隐患依然存在。
AI与无人机结合的创新应用
随着智能化技术的快速发展,越来越多的传统行业开始引入AI技术来提升效率和安全性。在电动自行车交通监管领域,无人机技术的应用为解决传统监管难题提供了新的思路。无人机具有机动性强、覆盖范围广、成本低等优点,能够实现对指定区域的自动巡航和实时监控。面对传统交通管理模式的局限,智能化技术的快速发展为我们提供了新的解决方案。特别是AI技术与无人机的结合,为电动自行车交通管理带来了革命性的变化。无人机以其便捷、机动性强的特点,能够在指定区域内进行自动巡航,实时采集交通数据,并通过众包平台完成高质量的数据标注处理。基于这些数据,我们可以开发构建场景化的检测识别模型,实现电动自行车违规行为的精准识别。
1. 数据采集与模型构建
无人机在巡航过程中,能够捕捉到道路上的实时画面,包括电动自行车的行驶状态、骑行者是否佩戴头盔、是否存在违规载人或安装遮阳棚等情况。这些数据经过专业标注后,被用于训练AI检测识别模型。模型通过深度学习算法,能够准确识别出各种违规行为,为后续的精准管理提供数据支持。
2. 实时监测与预警
部署在无人机机载算力设备上的检测识别模型,能够在无人机巡航过程中实时分析拍摄到的图像,快速识别出违规行为。一旦发现违规情况,无人机可以立即将相关信息发送到中央端,中央端则根据违规位置自动将信息推送给最临近的交警,实现快速响应处理。这种实时监测与预警机制,大大提高了交通管理的效率和精准度。
3. 重点区域巡航
在道理卡口、红绿灯等关键位置,无人机可以进行重点巡航,多次拍摄并分析图像,确保这些区域的交通秩序得到有效维护。同时,通过大数据分析,还可以预测交通拥堵趋势,提前采取措施进行疏导,进一步优化交通管理。
本文正是在这样的背景思考下想要趁着闲暇时间从实验性质的角度探索开发构建智能化的检测识别系统,在前文中我们已经进行了相关的开发实践,感兴趣的话可以自行移步阅读即可:
《无人机智能鹰眼守护电动车出行安全,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建无人机航拍道路交通场景下电动车不带头盔、违规载人和安装遮阳棚智能检测识别系统》
《无人机智能鹰眼守护电动车出行安全,基于YOLOv7全系列【tiny/l/x】参数模型开发构建无人机航拍道路交通场景下电动车不带头盔、违规载人和安装遮阳棚智能检测识别系统》
《无人机智能鹰眼守护电动车出行安全,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建无人机航拍道路交通场景下电动车不带头盔、违规载人和安装遮阳棚智能检测识别系统》
《无人机智能鹰眼守护电动车出行安全,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建无人机航拍道路交通场景下电动车不带头盔、违规载人和安装遮阳棚智能检测识别系统》
《无人机智能鹰眼守护电动车出行安全,基于YOLOv11全系列【n/s/m/l/x】参数模型开发构建无人机航拍道路交通场景下电动车不带头盔、违规载人和安装遮阳棚智能检测识别系统》
《无人机智能鹰眼守护电动车出行安全,基于最新以注意力为核心的YOLOv12全系列【n/s/m/l/x】参数模型开发构建无人机航拍道路交通场景下电动车不带头盔、违规载人和安装遮阳棚智能检测识别系统》
《无人机智能鹰眼守护电动车出行安全,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建无人机航拍道路交通场景下电动车不带头盔、违规载人和安装遮阳棚智能检测识别系统》
本文主要是想要基于YOLO系列最新发表的超图增强型自适应视觉感知的目标检测模型YOLOv13全系列的模型来进行相应的开发实践,首先看下实例效果:
接下来看下实例数据:
在目标检测领域内YOLO系列实在是太卷了,短短一年的时间感觉版本都要迭代好几代了,前面YOLOv12都还没有焐热,现在清华的团队又发布了YOLOv13了,下面是对YOLOv13论文的阅读记录,感兴趣的话可以自行移步阅读即可:
YOLOv13模型整体架构如下所示:
官方项目地址在这里,如下所示:
官方发布了四个不同参数量级的模型,对应的预训练权重地址如下所示:
YOLOv13-N YOLOv13-S YOLOv13-L YOLOv13-X
项目整体是以ultralytics项目为基准构建的,所以整体的使用依旧是比较简洁的风格,实例实现如下所示:
#模型训练开发
from ultralytics import YOLO
model = YOLO('yolov13n.yaml')
results = model.train(
data='coco.yaml',
epochs=600,
batch=256,
imgsz=640,
scale=0.5, # S:0.9; L:0.9; X:0.9
mosaic=1.0,
mixup=0.0, # S:0.05; L:0.15; X:0.2
copy_paste=0.1, # S:0.15; L:0.5; X:0.6
device="0,1,2,3",
)
metrics = model.val('coco.yaml')
results = model("path/to/your/image.jpg")
results[0].show()
#模型评估测试
from ultralytics import YOLO
model = YOLO('yolov13{n/s/l/x}.pt') # Replace with the desired model scale
#模型推理预测
from ultralytics import YOLO
model = YOLO('yolov13{n/s/l/x}.pt') # Replace with the desired model scale
model.predict()
#模型格式转化
from ultralytics import YOLO
model = YOLO('yolov13{n/s/l/x}.pt') # Replace with the desired model scale
model.export(format="engine", half=True) # or format="onnx"
这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。
【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。
【mAP0.5:0.75】
mAP0.5:0.75,也被称为mAP@[0.5:0.75]或AP@[0.5:0.75],表示在IoU阈值从0.5到0.75变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.75,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.75的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.75可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.75都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.75则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。
【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。
【loss曲线】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。
整体对比分析来看:不难发现四款不同参数量级的模型最终达到了较为相似的结果,拉开了一定的差距,这里综合参数量考虑我们最终选定了l系列的模型来作为线上的推理计算模型。
接下来看下l系列模型的详细情况。
【离线推理实例】
【Batch实例】
【混淆矩阵】
【F1值曲线】
【Precision曲线】
【PR曲线】
【Recall曲线】
【训练可视化】
智能化监管手段的应用,不仅能够提高监管效率,减少人力成本,还能实现精准执法,降低事故风险。例如,在道路卡口、红绿灯等关键位置,无人机可以进行重点巡航,对违规行为进行高频次监测。这种模式不仅能够有效遏制违规行为的发生,还能通过数据分析为交通管理部门提供决策支持,优化交通资源配置。然而,智能化监管也面临着一些挑战。例如,无人机的续航能力和数据传输稳定性需要进一步提升,以确保长时间、不间断的监控。此外,如何确保数据的安全性和隐私保护,也是需要解决的问题。未来,随着技术的不断进步和政策的逐步完善,智能化交通监管有望在更多城市得到推广和应用。通过无人机与AI技术的深度融合,我们有望实现更高效、更精准的交通管理,为电动自行车的安全出行保驾护航。总之,电动自行车的交通安全问题需要全社会的共同努力。智能化技术的应用为解决这一问题提供了新的思路和方法,但同时也需要我们不断完善相关技术和制度,以确保其有效实施。让我们携手共进,共同创造一个更加安全、有序的交通环境。