Tensorflow和PyTorch的浅解

本文探讨了Tensorflow(TF)和PyTorch(PT)的异同。PT以其动态计算图、Imperative编程和GPU加速受到青睐,适合研究。TF则因其静态计算图和稳定性适用于生产环境。PT的动态图允许运行时网络调整,适合RNN等,而TF的静态图在批处理和效率上有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下文简称Tensorflow为TF,PyTorch为PT。TF出自Google之手(2015年),而PT是来自Facebook AI的一个python package(2016)。两者皆是基于Python的深度学习开发平台。其中,TF较早于PT出现,且是最广为使用的平台。然而,近年来PT大有赶超之势。本文浅谈TF和PT的异同。首先,PT是Torch的Python再开发版。Torch本是就是一个基于Lua语言的更早的平台,但考虑到Lua的偏门性,FAIR的研究人员将其移植到了python之上,有此得名Py + Torch。相比之下,TF更适合production因为它更稳定;PT更适合research因为它更自由(flexibility and speed)。PyTorch自身就是一个python package written in Python,但是同时支持如C或C++的API;而TF是用C++和CUDA写成的,通过python API来支持python coding。Fun fact,PT可以看做和Numpy是同样级别的python library,它们均是python package,都有一个C backend。相比之下,PT有更棒的GPU加速,而且PT跟适合搭建DNN。但是,仅用Numpy也可以实现基础的machine learning algorithms。从这个角度讲,PT和NP是python-oriented,而TF的初衷并不是针对python,而是提供了python API而已。Both TF and PT operate on tensors and view any models as a directed acyclic graph (DAG).

因为刚刚上手PyTorch,所以先来一小段PT的简介:

PT的两大核心特点:1. tensor computation with strong GPU acceleration(一个类似numpy的张量计算包);2. Building DNN on a tape-based autograd systems。

PT主要包含三大modules:1. Autograd modu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值