论文地址:Solving two-stage robust optimization problems using a column-and-constraint generation method
之前介绍过一个column-and-row generation方法,这次介绍一个更加常用的Column-and-constraint generation(C&CG)。
从论文题目就可以看出,这个方法主要用于two-stage robust optimization (RO) ,也就是robust adjustable or adaptable optimization,也就是说,第二阶段的问题是在第一阶段的决策做出后,对决策进行建模,并根据其不确定性来进行进一步的优化。
但是,这种问题一般很难求解,因为在很多时候,第一阶段的问题甚至都是NP-hard的。有两种思路可以在计算量不大的情况下求解此类问题。
- 第一种是优化的方法。这种思路假设第二阶段的决策只是一个单纯的函数关系,如仿射函数。
- 第二种是Benders’ decomposition方法。在第二阶段利用对偶方法基于第一阶段的问题构造一个价值函数value function。所以,这种思路也叫Benders-dual cutting plane algorithms。
而C&CG的思路大致是,在一个确定场景的原始空间动态地生成对于recourse decision variables的约束(dynamically generates constraints with recourse decision variables in the primal space for an identified scenario)。
recourse(追索?不是很确定这个术语是不是这样翻)是RO问题里的一个概念。如果只有一个阶段的RO,自然谈不上追索,也就是proble