Column-and-constraint generation

论文地址:Solving two-stage robust optimization problems using a column-and-constraint generation method

之前介绍过一个column-and-row generation方法,这次介绍一个更加常用的Column-and-constraint generation(C&CG)。

从论文题目就可以看出,这个方法主要用于two-stage robust optimization (RO) ,也就是robust adjustable or adaptable optimization,也就是说,第二阶段的问题是在第一阶段的决策做出后,对决策进行建模,并根据其不确定性来进行进一步的优化。

但是,这种问题一般很难求解,因为在很多时候,第一阶段的问题甚至都是NP-hard的。有两种思路可以在计算量不大的情况下求解此类问题。

  1. 第一种是优化的方法。这种思路假设第二阶段的决策只是一个单纯的函数关系,如仿射函数。
  2. 第二种是Benders’ decomposition方法。在第二阶段利用对偶方法基于第一阶段的问题构造一个价值函数value function。所以,这种思路也叫Benders-dual cutting plane algorithms。

而C&CG的思路大致是,在一个确定场景的原始空间动态地生成对于recourse decision variables的约束(dynamically generates constraints with recourse decision variables in the primal space for an identified scenario)。

recourse(追索?不是很确定这个术语是不是这样翻)是RO问题里的一个概念。如果只有一个阶段的RO,自然谈不上追索,也就是proble

<think>嗯,用户现在需要找一个广义分配问题(GAP)的求解器实现,特别是支持不同优化方法和变体处理。首先,我得明确广义分配问题的定义和常见解决方法。GAP是一个组合优化问题,通常涉及将任务分配给代理,满足资源约束,同时优化目标函数。常用的方法包括分支定界、分支切割、分支定价以及约束编程等。 用户提到的优化方法有分支定界法、局部搜索等,变体处理包括目标函数的最大化与最小化转换,以及允许部分项目不被分配的情况。可能需要引入虚拟代理来处理未分配的项目。接下来,我需要考虑现有的求解器是否支持这些功能。 首先,想到的是像Gurobi、CPLEX这样的商业求解器,它们通常支持分支切割、分支定价等算法,并且可以处理不同的目标函数。用户可能需要通过建模语言(如AMPL、GAMS、PuLP)来定义问题,然后调用这些求解器。不过,用户可能需要具体的实现代码,所以开源的解决方案可能更合适。 然后,SCIP也是一个开源的混合整数规划求解器,支持分支切割和定价,用户可以通过Python接口来使用。另外,OR-Tools作为Google的开源工具库,支持约束编程和局部搜索,适合处理GAP的变体,比如允许未分配的项目,可以通过添加虚拟代理来实现。 对于局部搜索等启发式方法,可能需要自己实现一些算法,或者使用现有的框架,如OptaPlanner。用户如果希望有具体的代码示例,可能需要参考OR-Tools的文档,或者查找GitHub上的相关项目。 此外,用户提到的目标转换,比如最大化转最小化,通常可以通过取负数来实现。未分配项目的情况,可以通过添加一个虚拟代理,其成本或收益为0,或者根据情况设置惩罚项。 现在需要验证这些信息是否正确。例如,Gurobi和CPLEX是否支持分支切割,SCIP是否开源且支持这些方法,OR-Tools如何处理未分配的项目。同时,是否需要提供具体的代码示例,比如使用OR-Tools的代码框架,或者SCIP的建模方式。 可能还需要考虑用户的技术背景,是否熟悉Python或Java,是否有商业求解器的许可,或者更倾向于开源工具。如果用户需要具体的实现细节,可能需要指导他们如何在这些工具中设置参数,调整算法,或者修改目标函数。 最后,生成相关问题,可能涉及不同求解器的比较,如何自定义启发式算法,处理大规模问题的方法,或者实际应用案例等。</think>### 广义分配问题求解器实现指南 广义分配问题(Generalized Assignment Problem, GAP)的求解器实现需要结合运筹学算法库和数学规划工具。以下是关键实现路径和工具推荐: --- #### 一、基础数学建模 对于最小化目标和最大化目标的转换,可通过调整目标函数系数符号实现: $$ \text{最大化目标} \Leftrightarrow \text{最小化负目标}: \max \sum c_{ij}x_{ij} \equiv \min \sum (-c_{ij})x_{ij} $$ 允许未分配项时,可引入虚拟代理(dummy agent),其资源容量无限且分配成本为0: $$ \text{虚拟代理成本}: c_{i0} = 0, \quad \forall i \in \text{Items} $$ --- #### 二、求解器实现框架 1. **商业数学规划工具** - **Gurobi/CPLEX**: 支持分支定界(Branch-and-Bound)、分支切割(Branch-and-Cut)等算法 ```python # Gurobi示例(最小化目标) model = grb.Model() x = model.addVars(items, agents, vtype=grb.GRB.BINARY) model.setObjective(grb.quicksum(c[i][j]*x[i,j] for i in items for j in agents), grb.GRB.MINIMIZE) model.addConstrs(grb.quicksum(r[i][j]*x[i,j] for i in items) <= b[j] for j in agents) model.optimize() ``` 2. **开源求解器** - **SCIP**: 支持分支定价(Branch-and-Price)的混合整数规划求解器 ```cpp SCIP_CALL( SCIPcreateVar(scip, &var, "x_ij", 0.0, 1.0, c_ij, SCIP_VARTYPE_BINARY) ); SCIP_CALL( SCIPaddCons(scip, cons, "resource_limit", r_ij, b_j, TRUE, TRUE) ); ``` 3. **约束编程与局部搜索** - **OR-Tools**: 支持约束编程和元启发式算法 ```python from ortools.sat.python import cp_model model = cp_model.CpModel() x = {(i,j): model.NewBoolVar(f'x_{i}_{j}') for i in items for j in agents} model.Add(sum(r[i][j] * x[i,j] for i in items) <= b[j] for j in agents) model.Minimize(sum(c[i][j] * x[i,j] for i in items for j in agents)) ``` --- #### 三、变体处理方法 | 变体类型 | 实现方法 | |------------------------|------------------------------------------------------------------------| | 未分配项处理 | 添加虚拟代理,设置其资源容量为$\infty$,分配成本为0[^1] | | 目标方向转换 | 修改目标函数系数符号 | | 多目标优化 | 使用ε-约束法或加权求和法 | | 动态资源约束 | 在求解器中实时更新约束右端项(RHS) | --- #### 四、性能优化建议 1. **分支策略改进**:在分支定界中优先选择资源利用率高的变量 2. **割平面生成**:添加有效不等式(如覆盖不等式)缩小搜索空间[^2] 3. **局部搜索**:使用变邻域搜索(VNS)改进初始可行解 ```python def variable_neighborhood_search(initial_solution): while not stopping_condition: solution = shake(initial_solution, k) new_solution = local_search(solution) if accept(new_solution): initial_solution = new_solution return initial_solution ``` ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值