车辆重识别笔记10.25

1、分类损失和度量损失

在深度学习中,分类损失度量损失都是用于衡量模型性能的损失函数,但它们的作用和应用场景有所不同。

1. 分类损失

分类损失(Classification Loss)是用于监督模型进行分类任务的损失函数。分类任务的目标是将输入样本分配到一个或多个预定义的类别中,分类损失主要用于衡量模型的分类准确性。

  • 常见的分类损失函数:

    • 交叉熵损失(Cross-Entropy Loss):最常用于多分类任务。它通过比较模型输出的概率分布和真实标签的one-hot分布来衡量模型的预测准确度。

    • 二元交叉熵损失(Binary Cross-Entropy Loss):用于二分类任务,通过比较预测的概率值与真实标签值来计算损失。

    • Focal Loss:交叉熵的改进版本,用于处理类别不平衡的问题,增加对难以分类样本的关注。

分类损失的核心在于通过反向传播更新模型参数,使得模型能够精确预测类别标签。

2. 度量损失

度量损失(Metric Loss)主要用于学习样本之间的相似性,而不是直接分类。度量损失通常用于度量学习任务中,目标是学习一个特征空间,使得相似样本在该空间中距离较近,不相似样本距离较远。

  • 常见的度量损失函数:

    • 对比损失(Contrastive Loss):通过成对的样本进行训练,拉近相似样本的距离,同时推远不相似样本的距离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值