1、分类损失和度量损失
在深度学习中,分类损失和度量损失都是用于衡量模型性能的损失函数,但它们的作用和应用场景有所不同。
1. 分类损失
分类损失(Classification Loss)是用于监督模型进行分类任务的损失函数。分类任务的目标是将输入样本分配到一个或多个预定义的类别中,分类损失主要用于衡量模型的分类准确性。
-
常见的分类损失函数:
-
交叉熵损失(Cross-Entropy Loss):最常用于多分类任务。它通过比较模型输出的概率分布和真实标签的one-hot分布来衡量模型的预测准确度。
-
二元交叉熵损失(Binary Cross-Entropy Loss):用于二分类任务,通过比较预测的概率值与真实标签值来计算损失。
-
Focal Loss:交叉熵的改进版本,用于处理类别不平衡的问题,增加对难以分类样本的关注。
-
分类损失的核心在于通过反向传播更新模型参数,使得模型能够精确预测类别标签。
2. 度量损失
度量损失(Metric Loss)主要用于学习样本之间的相似性,而不是直接分类。度量损失通常用于度量学习任务中,目标是学习一个特征空间,使得相似样本在该空间中距离较近,不相似样本距离较远。
-
常见的度量损失函数:
-
对比损失(Contrastive Loss):通过成对的样本进行训练,拉近相似样本的距离,同时推远不相似样本的距离。
-
三
-