概率与期望详解!一次精通oi中的概率期望

本文深入讲解概率和期望在算法竞赛(OI)中的应用,包括基础概念如随机变量、期望值的计算,以及如何解决最大值不超过Y的期望、独立事件期望、拿球问题、随机游走等经典问题。通过实例和例题解析,帮助读者掌握在实际问题中应用概率期望的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@(期望与概率)

基础概念

  • 随机变量:有多种可能的取值的变量
    万物都可以当做随机变量,包括常数,方便用 \(\sum\) 统计
  • P(A):事件 A 发⽣的概率
  • E(X):随机变量 X 的期望值,\(E(X)=Sum[ P(X=i)*i ]\)
  • 独⽴事件:互相不影响的事件

    期望不相关可积性

    \(E(xy)=E(x)*E(y)\)\(x\)\(y\)互相独立

    常用技巧

  • 对于离散变量 X,\(P_{(X=K)}=P_{(X\le K)}-P_{(X\leq K-1)}\)

    期望线性性

\(E(x+y)=E(x)+E(y)\) 任意\(x,y\)
\[E(x+y)=\sum_i \sum_j P(x=i,y=j)(i+j)\]
\[\sum_i \sum_j P(x=i,y=j) i\]

\[=\sum_i i P(x=i)\]

j同理

得到
\[\sum_iiP(x=i)+\sum_jjP(x=j)\]

\[=\sum_i \sum_j P(x=i,y=j) i+\sum_i \sum_j P(x=i,y=j) j\]

\[\sum_i \sum_j P(x=i,y=j)(i+j)\]

\[=E(x+y)\]

最大值不超过Y的期望

在1~s的数中随机:

\[E(y)=\sum_i i P(y=i)\]

\[=\sum_i i (P(y<=i) - P(y<=i-1))\]

\[=\sum_i i((\frac{i}{s})^n-(\frac{i-1}{s})^n)\]

概率为P时期望成功次数

答案:期望为\(\frac{1}{p}\)次后发生

设X为次数

即证明\(E(x)=\frac{1}{p}\)

解一、\[P(x=i)=(1-p)^{i-1}*p\]
解二、\[P(x>=i)-P(x>=(i+1))=(1-p)^{i-1}*p\]

只用管前几次都失败了

\[P(x>=i)= (1-p)^{i-1}\]

\[\sum _{

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值