目录
@(期望与概率)
基础概念
- 随机变量:有多种可能的取值的变量
万物都可以当做随机变量,包括常数,方便用 \(\sum\) 统计 - P(A):事件 A 发⽣的概率
- E(X):随机变量 X 的期望值,\(E(X)=Sum[ P(X=i)*i ]\)
独⽴事件:互相不影响的事件
期望不相关可积性
\(E(xy)=E(x)*E(y)\) ,\(x\)和\(y\)互相独立
常用技巧
对于离散变量 X,\(P_{(X=K)}=P_{(X\le K)}-P_{(X\leq K-1)}\)
期望线性性
\(E(x+y)=E(x)+E(y)\) 任意\(x,y\)
\[E(x+y)=\sum_i \sum_j P(x=i,y=j)(i+j)\]
\[\sum_i \sum_j P(x=i,y=j) i\]
\[=\sum_i i P(x=i)\]
j同理
得到
\[\sum_iiP(x=i)+\sum_jjP(x=j)\]
\[=\sum_i \sum_j P(x=i,y=j) i+\sum_i \sum_j P(x=i,y=j) j\]
\[\sum_i \sum_j P(x=i,y=j)(i+j)\]
\[=E(x+y)\]
最大值不超过Y的期望
在1~s的数中随机:
\[E(y)=\sum_i i P(y=i)\]
\[=\sum_i i (P(y<=i) - P(y<=i-1))\]
\[=\sum_i i((\frac{i}{s})^n-(\frac{i-1}{s})^n)\]
概率为P时期望成功次数
答案:期望为\(\frac{1}{p}\)次后发生
设X为次数
即证明\(E(x)=\frac{1}{p}\)
解一、\[P(x=i)=(1-p)^{i-1}*p\]
解二、\[P(x>=i)-P(x>=(i+1))=(1-p)^{i-1}*p\]
只用管前几次都失败了
\[P(x>=i)= (1-p)^{i-1}\]
\[\sum _{