什么是 AI(人工智能)?

人工智能定义 - Artificial inteligence definition

AI 是一个总称,指为执行通常需要人类智能的任务(如理解语言或识别模式)而构建的工具和系统。AI 赋予机器理解、交流、学习、解决问题和创造的能力。AI 是多个学科的产物,包括计算机科学、数据科学、语言学、神经科学、哲学(尤其是逻辑学研究)和心理学。

AI 代表了数据分析中的一种变革性范式,使得洞察的规模和速度远超人类能力。如今,全球企业使用 AI 执行数据检索、关联和处理等任务。它已被集成到日常应用中,如可观测性网络安全客户体验和风险管理。

AI 的历史

1950 年,Alan Turing(没错,就是那位著名的二战密码破译者)发表了《Computing Machinery and Intelligence》,提出了机器智能的概念。随后在 1956 年,John McCarthy 创建了达特茅斯人工智能夏季研究项目,首次提出了 “人工智能” 一词,并将 AI 确立为一个研究领域。

1966 年,Joseph Weizenbaum 创建了第一个聊天机器人 ELIZA。ELIZA 使用自然语言处理 (natural language processing - NLP) 模拟人与人的互动,并让用户误以为它是心理治疗师。

接着是 80 年代,这个十年被称为 “AI boom”。这一时期的重点是专家系统 —— 基于规则的程序,用来模仿决策过程 —— 引发了人们对机器智能潜力的兴奋,尽管深度学习和大语言模型 (large language models - LLMs) 还要几十年后才出现。

在 80 年代末,由于过高的期望、有限的计算能力以及令人失望的结果,AI 热情和资金枯竭,这一时期被称为 “AI winter”,一直持续到 1990 年代末和 2000 年代初 AI 兴趣的复兴。当时引入了 AI agents 并增强了自动化能力。从 2002 年的第一台 Roomba、2004 年 NASA 的 Spirit 和 Opportunity 火星车着陆,到社交媒体平台和 Netflix 的基于机器学习 (ML) 的推荐引擎,AI 已经无处不在。2011 年出现了两个重要的 AI 成就:IBM 的 Watson 和苹果的 Siri。自此,AI 成为日常生活的一部分 —— 但仍主要掌握在工程师和企业手中。

快进到 2022 年:OpenAI 发布了 ChatGPT,使生成式 AI(generative AI) 对公众来说变得简单易用。虽然谷歌在 2018 年推出了 BERT,但 ChatGPT 却是全球性的改变者,引发了一场新的创新浪潮。有人称这是新的 AI boom,标志着 AI 采纳的重要里程碑。

为什么 AI 重要?

AI 之所以重要,是因为它是现代科技创新的重要基础。虽然并非所有新技术都使用 AI,但 AI 经常在幕后发挥作用。随着数据的产生和消费量不断增长,数字生态系统日益复杂,组织可能难以清晰了解自身运营。

当正确使用时,AI 可以成为帮助组织在大规模上执行复杂数据相关任务的宝贵工具。先进的 AI 技术能够提高驱动业务决策的数据相关操作的速度和准确性。例如,在需求预测中,AI 可以分析历史销售数据来预测需要订购多少库存。在最佳状态下,AI 通过改变我们的工作和生活方式来推动创新。

随着 AI 的持续普及,它有潜力接管单调重复的任务,从而让人类专注于更有价值的、需要创造性和批判性思维的任务。然而,AI 的效果取决于其训练数据的质量以及技术的成熟度。

AI 如何工作

AI 通过使用机器学习、深度学习、自然语言处理和神经网络来分析数据、识别模式并模拟人类认知的部分功能。

机器学习

机器学习使(Machine learning)用算法通过识别数据点之间的模式和关系从数据中学习,并利用这些模式随着时间推移提升任务表现。这个基本原理使计算机能够在新的环境中做出预测。机器学习支撑了 AI 识别和响应情感、适应新数据或变化环境的能力。它实现了情感分析(sentiment analysis)、异常检测(anomaly detection)、图像识别和预测分析等功能。

组织可以使用预训练的机器学习模型并输入新数据,或者从零开始训练模型。

自然语言处理

自然语言处理 (Natural language processing - NLP) 是一种依赖机器学习算法(machine learning algorithms)、深度学习和计算语言学的 AI,用于教会计算机人类(或自然)语言。NLP 是支撑语音识别、语义搜索、聊天机器人以及其他语言相关应用的基础技术层。

得益于 NLP,计算机能够识别、处理、理解并生成自然语言。

神经网络

神经网络(Neural networks)是一种支持深度学习的机器学习算法。这类算法基于人类大脑的结构(因此称为 “神经”),并具备先进的模式识别技术。节点层会对复杂和庞大的数据集进行分析。

深度神经网络的输入层和输出层之间的多层结构实现了深度学习。这使得数据特征可以被自动提取。虽然神经网络并非大脑的精确复制品,但它们是受其结构和功能启发的简化计算模型,从而实现强大的模式识别能力。

深度学习

深度学习(Deep learning)是机器学习的一个子集,利用多层神经网络从大量数据中自动学习并提取特征。这些模型受到人类大脑结构的启发,在识别复杂模式方面表现出色。

AI 训练和微调

AI 训练指的是训练机器学习算法从数据中学习统计模式的过程。微调则是让模型学会执行特定任务。

首先是 AI 训练,算法被输入一个数据集,然后通过多种训练技术之一学习预测:

  • 监督学习是一种模式识别过程。带标签的数据被输入机器学习算法,算法识别数据点与其标签之间的关系。通过学习这些统计关联,它可以预测类似数据点的正确标签。

  • 无监督学习指在无标签数据上训练算法以发现隐藏的模式或结构。任务包括聚类(如将相似的项目分组)和降维(如在保留特定特征的同时简化数据)。

  • 半监督学习是监督学习与无监督学习的结合,模型使用带标签和无标签数据共同训练。其目标是提升模型在分类或回归等任务上的表现。

一旦模型被训练完成,团队可以开始对其进行微调。异常检测或情感分析等任务通常通过微调现有的预训练模型来完成。这种方式更快、资源消耗更少、成本更低。

虽然 AI 依赖训练和微调来提供准确、相关的结果,但最重要的是依赖训练数据的质量。这就是为什么训练和微调的过程从数据收集和预处理开始。这个过程越完善,AI 的结果就会越好。

AI 的类型

虽然 AI 包含多种技术,但也存在许多类型的 AI。

狭义 AI

狭义 AI 被训练来执行非常具体的任务。它是目前使用最广泛的 AI 类型。典型例子包括语音和语音识别系统、基础聊天机器人(通常是基于规则或检索的,与能生成原创内容的生成式模型不同)、以及推荐系统(如流媒体服务所使用的系统)。

通用 AI

通用 AI 是一种理论上的 AI 类型,它能够学习、理解并适应,以执行跨广泛或通用用例的不同任务。

我们可以通过机器人学的实际例子更好地说明通用 AI 的概念,目前大多数系统仍局限于狭窄且预定义的能力。依赖计算机视觉和部分预训练来理解环境的机器人,虽然能在一定程度上根据环境调整动作,但仍局限于熟悉的情境、场景和参数。

例如,一个被编程为将一罐汽水倒入杯子的机械臂,只能在固定条件下完成(即相同类型的汽水罐、相同的房间、相同体积的液体)。如果换成玻璃瓶、在不同房间更高的桌子上,或者给它的是香槟杯而不是普通杯子,它就会失败。而通用 AI 将使机械臂能够概念性地理解“倒饮料”这个任务,并将行为适配到新的容器、环境和限制条件。

生成式 AI

生成式 AI(Generative AI ) 的独特之处在于其生成或创造新内容的能力,包括文本、代码、软件、图像和视频。生成式 AI 依赖机器学习来根据与用户的交互不断适应和学习。它还使用 LLMs、NLP、神经网络、向量数据库(vector databases)以及多种算法来分析 prompts 并生成响应。

生成式 AI 模型在大型数据集上进行训练,以学习不同数据点之间的关系。这种模式识别能力使其在接收到 prompt 或 query 时能够进行预测。因此,当生成式 AI 生成新的内容作为响应时,这个响应实际上是复杂预测的结果。

深入探索 15 个生成式 AI 用例

AI 的优势

当训练得当时,AI 能为各行各业的企业和个人带来显著好处。其强大的自动化能力推动效率和准确性,提升个性化客户体验,并通过优化运营帮助组织管理成本。

  • 提升效率:由 AI 驱动的自动化对提升效率的组织来说是一大突破。无论是站点可靠性工程师 (site reliability engineers - SREs) 用于监控和优化性能,还是客服人员用来处理查询从而专注高优先级问题,AI 在大规模处理海量数据的能力是效率提升的关键。

  • 更好的业务决策:在使用复杂且训练良好的模型时,AI 的大规模数据分析能力能够极大地支持人类能力。在根因分析(root cause analysis)或风险管理的场景下,AI 能提供更准确的洞察,减少人为错误,从而带来更优的数据驱动业务决策

  • 增强客户体验:由 AI 驱动的搜索可以为客户提供更智能的对话式搜索体验并返回相关结果。从 24/7 可用的聊天机器人到 AI 支持的个性化功能,客户能获得更快速的服务、更贴合的体验和更高效的问题解决,从而提升整体满意度和品牌互动。了解如何构建由 AI 驱动的数字化客户体验战略

  • 节省成本:通过提升效率和准确性、优化运营,并借助增强的客户体验提升品牌忠诚度,AI 最终对盈利有积极影响。事实上,82% 的 IT 领导者认为,他们可以通过实时获取数据、使用数据分析工具进行业务决策,以及利用 AI 提供数据驱动洞察来增加收入。

AI 的挑战与局限

尽管 AI 对组织和用户有诸多优势,并且近年来发展和应用速度迅速,但 AI 仍存在局限性,并带来需要讨论的挑战。

  • 偏见:AI 的效果取决于其训练数据。如果训练数据存在偏见,尤其是人们未识别出的偏见,这可能会强化无意识偏见,并在应用中造成严重后果。例如,医疗机构依赖 AI 处理理赔,或执法机构在刑事调查中使用 AI。有些用于简历筛选的 AI 系统表现出偏见,会惩罚包含女性相关词汇的简历,降低女性学院毕业生的评分。

  • 伦理问题:AI 引发了许多伦理问题。AI 是否使用了私人数据或未获得明确同意的个人知识产权数据进行训练?人脸识别模型是否使用了街头摄像头视频而未经知情同意?生成式 AI 尤其引发了版权侵权和肖像盗用的诸多问题。监管机构和组织对 AI 的负责任和伦理使用持续关注。

  • 岗位替代:虽然 AI 旨在作为增强人类技能的工具,但其自动化能力已在多个行业导致岗位替代,从娱乐到制造业。

  • 可解释性:深度学习模型是极其复杂的算法,类似黑箱。这使得理解其决策过程变得困难,从而难以验证响应的有效性或准确性。

这些挑战需要个人用户、组织和政府的审慎考虑。AI 有潜力推动广泛的民主化和包容性。为了充分利用这些优势,决策者必须促进并执行负责任和伦理的使用。

AI 的应用与用例

组织已在广泛的行业和场景中应用 AI。

企业 AI 应用

对组织而言,AI 正在革新运营、网络安全和决策制定。

  • 数据分析:由 AI 驱动的数据分析是可观测性和网络安全的核心。AI 能分析庞大且多样的数据集,使组织能够跨不同领域关联信息,获得更好的业务洞察,并提升异常检测和根因分析能力。

  • 客户服务聊天机器人和虚拟助手帮助客服人员分流工单,并全天提供个性化服务。AI 可用于推荐引擎或对话式搜索功能,提升客户参与度和结果相关性。

行业特定 AI 应用

一些行业已使用 AI 数十年,而其他行业,如制造业和医疗(尤其是面向患者的医疗)现在才开始应用 AI 来解决其特有挑战。

  • 医疗:AI 用于诊断、个性化治疗规划和加速药物研发流程。

  • 金融:AI 提升了欺诈检测系统、算法交易和信用风险评估的能力,能处理和分析复杂的金融数据。

  • 制造业:AI 驱动机器人接管危险和重复性任务,并实现预测性维护、质量控制和供应链优化。

  • 零售:AI 提供个性化产品推荐和需求预测,提升客户体验并优化运营。

消费者 AI 应用

从 “Hey, Siri!” 到 “Alexa, play …”,AI 已成为人们日常生活的一部分,其背后是 AI 技术的支撑。

  • 智能家居设备:从上网浏览到控制灯光,像 Google Home 和 Amazon Echo 这样的 AI 驱动家居设备将自动化直接带给消费者。

  • 个性化流媒体:Netflix 和 Spotify 等平台使用 AI 推荐算法根据个人偏好定制内容。

  • 健身与健康应用:由 AI 驱动的工具提供指导、活动追踪和个性化健身计划,帮助用户实现健康目标。

AI 的未来是什么?

随着组织继续整合传统 AI 并采用生成式 AI,未来充满了可能性:新的能力、新的产品,以及新的变革性技术进步。未来还要求负责任的 AI 开发,确保在全球加速采用的过程中保持伦理使用、公平性和透明性。

尤其是生成式 AI,将重新定义内容创作、产品设计和问题解决。同时,通用 AI —— 仍是遥远目标 —— 仍然是科学家和创新者的终极追求,他们设想一个统一的 AI “大脑”,能够执行多样任务并控制多台机器。

搜索 AI,即搜索技术与人工智能的融合,有望提升知识共享和运营效率,优化内部流程和客户体验。虽然搜索通过即时从庞大数据集返回相关结果改变了信息检索方式,但它仍可能难以充分理解 context 并生成更深层次的洞察。而 AI 擅长分析复杂模式和生成洞察,但在庞大数据存储中查找和访问特定信息时可能缺乏精确性。当将 AI 与搜索技术结合时,就能发挥两者优势,将未充分利用的非结构化数据转化为所需答案。

Elastic 的 AI 解决方案

Elastic 的 Search AI Platform 是一个端到端解决方案,将指数增长的未充分利用非结构化数据转化为正确的答案、有效的行动和有意义的成果,帮助组织做出更佳决策、最大化效率、推动创新、提升客户体验、改善运营韧性并降低安全风险。

Search AI Platform 是 Elastic 两个开箱即用解决方案 —— Elastic ObservabilityElastic Security —— 的基础。它是开发者构建下一代生成式 AI 驱动应用和服务的首选平台。该平台设计开放、性能卓越,并支持创新。

探索 Elastic Search AI

AI 资源

其他 AI 常见问题

AI 如何用于搜索与发现?

现代搜索系统使用 AI 超越关键词匹配,分析语义、 context 和用户行为。AI 模型优先显示相关结果并提供可能被忽视的洞察,这在消费应用和企业环境中都至关重要。

此外,AI 通过更精确地解释语言、考虑 context、措辞和用户行为来改进搜索。借助 AI,即使查询不完整或模糊,系统也能显示相关信息。这在大型或复杂数据集中特别有用。

使用 Search AI 将非结构化数据转化为战略优势

AI 与机器学习 (ML) 的区别是什么?

AI 涵盖从基于规则的系统到机器人技术的多种技术,而 ML 专门使用统计方法从数据中学习。AI 是更广泛的领域,包括模拟机器类人智能的任何方法。ML 是 AI 中的数据驱动方法,算法通过经验学习而非依赖硬编码规则。

深入了解机器学习与 AI 的区别。

什么是生成式 AI,它与传统 AI 有何不同?

与基于输入识别或响应的传统 AI 不同,生成式 AI(generative AI) 能产生全新的输出。它从数据中学习结构、风格和关系,并利用这些生成新结果。传统 AI 通常关注分析、分类或预测。生成式模型将 AI 的作用从决策支持扩展到内容创作。

脚注

  1. A. M. Turing, "Computing Machinery and Intelligence," Mind 49: 433–460, 1950.

  2. Dartmouth, "Artificial Intelligence Coined at Dartmouth," 1956.

  3. Joseph Weizenbaum, Communications of the ACM, "ELIZA—a computer program for the study of natural language communication between man and machine," 1966.

  4. Thomas Haigh, "Historical Reflections: How the AI Boom Went Bust," 2024.

  5. Devlin, Jacob, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," 2019.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值