CodeForces 629 C.Famil Door and Brackets(组合数学)

本文介绍了一种算法,用于解决给定长度为m的括号序列s,如何构造两个括号序列p和q,使p+s+q成为长度为n的合法括号序列的问题,并详细解释了解决方案及其实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
给出一个长度为m的括号序列s,要求构造两个括号序列p和q使得p+s+q是一个长度为n的合法括号序列,问方案数
Input
第一行两个整数n和m表示要构造的括号序列长度和s的长度,之后一个括号序列s(1<=m<=n<=1e5,n-m<=2000)
Output
输出方案数,结果模1e9+7
Sample Input
4 1
(
Sample Output
4
Solution
首先给出两个组合数学中关于下矩阵格路径的结论:
1.(0,0)->(p,q)的下矩阵格路径(即每次只能往上走往右走且只能在对角线下方的路径)数为(p-q+1)/(p+q)*C(p+q,p),其中p>=q
2.(p,q)->(n,n)的下矩阵格路径在换坐标系后与(0,0)->(n-q,n-p)的下矩阵格路径一一对应,其中q<=p<=n
回到这个题,首先统计s中左括号比右括号多的数量num,并在更新过程中更新num的最小值min,如果min非负则s本身就合法进而不需要适当改变p去使得s合法,如果min为负,那么p中左括号必须比右括号至少多|min|个,求出num和min后首先构造p,一来枚举p长度lp,二来枚举p中左括号比右括号多的数量i(min<=i<=lp),对于每个lp和i,计算出左括号数量为x=(lp+i)/2,右括号数量y=(lp-i)/2,由第一个结论知此时合法方案即为(0,0)->(x,y)的下矩阵格路径数,对应的去求q的方案数,此时p和s中左括号比右括号多了i+num个,那么q中右括号必须比左括号多i+num个,而q的长度lq=n-m-lp,故解出q中左括号数量为xx=(lq-i-num)/2,右括号数量为yy=(lq+i+num)/2,则前面左括号数为n-xx,右括号数为n-yy,那么q的方案数为(n-xx,n-yy)->(n,n)的下矩阵格路径数,由第二个结论知方案数为(0,0)->(yy,xx)的下矩阵格路径数,p的方案数乘上q的方案数即为p的长度为lp且左括号比右括号多i个时的合法方案数
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 4444
#define mod 1000000007ll
int n,m;
char s[111111]; 
ll C[maxn][maxn],inv[maxn];
ll mod_pow(ll a,ll b,ll c)
{
    ll ans=1;
    while(b)
    {
        if(b&1)ans=1ll*ans*a%c;
        a=1ll*a*a%c;
        b>>=1; 
    }
    return ans;
}
void init()
{
    memset(C,0,sizeof(C));
    C[0][0]=1;
    for(int i=1;i<=4000;i++)
    {
        C[i][0]=C[i][i]=1;
        for(int j=1;j<i;j++)
        {
            C[i][j]=C[i-1][j-1]+C[i-1][j];
            if(C[i][j]>=mod)C[i][j]-=mod;
        }
    }
    for(int i=1;i<=4000;i++)inv[i]=mod_pow(i,mod-2,mod);
}
ll Solve(int p,int q)
{
    return 1ll*(p-q+1)*inv[p+1]%mod*C[p+q][p]%mod;
}
int main()
{
    init();
    while(~scanf("%d%d",&n,&m))
    {
        scanf("%s",s);
        int num=0,Min=0;
        for(int i=0;i<m;i++)
        {
            if(s[i]=='(')num++;
            else num--;
            Min=min(Min,num);
        }
        Min=abs(Min);
        ll ans=0;
        for(int p=0;p<=n-m;p++)
        {
            for(int i=Min;i<=p;i++)
                if((p-i)%2==0)
                {
                    ll temp=Solve((p+i)/2,(p-i)/2);
                    int q=n-m-p;
                    if(i+num>q||(q-i-num)%2)break;
                    temp=temp*Solve((q+i+num)/2,(q-i-num)/2)%mod;
                    ans+=temp;
                    if(ans>=mod)ans-=mod;
                }
        }
        printf("%I64d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值