Description
给出一个长度为m的括号序列s,要求构造两个括号序列p和q使得p+s+q是一个长度为n的合法括号序列,问方案数
Input
第一行两个整数n和m表示要构造的括号序列长度和s的长度,之后一个括号序列s(1<=m<=n<=1e5,n-m<=2000)
Output
输出方案数,结果模1e9+7
Sample Input
4 1
(
Sample Output
4
Solution
首先给出两个组合数学中关于下矩阵格路径的结论:
1.(0,0)->(p,q)的下矩阵格路径(即每次只能往上走往右走且只能在对角线下方的路径)数为(p-q+1)/(p+q)*C(p+q,p),其中p>=q
2.(p,q)->(n,n)的下矩阵格路径在换坐标系后与(0,0)->(n-q,n-p)的下矩阵格路径一一对应,其中q<=p<=n
回到这个题,首先统计s中左括号比右括号多的数量num,并在更新过程中更新num的最小值min,如果min非负则s本身就合法进而不需要适当改变p去使得s合法,如果min为负,那么p中左括号必须比右括号至少多|min|个,求出num和min后首先构造p,一来枚举p长度lp,二来枚举p中左括号比右括号多的数量i(min<=i<=lp),对于每个lp和i,计算出左括号数量为x=(lp+i)/2,右括号数量y=(lp-i)/2,由第一个结论知此时合法方案即为(0,0)->(x,y)的下矩阵格路径数,对应的去求q的方案数,此时p和s中左括号比右括号多了i+num个,那么q中右括号必须比左括号多i+num个,而q的长度lq=n-m-lp,故解出q中左括号数量为xx=(lq-i-num)/2,右括号数量为yy=(lq+i+num)/2,则前面左括号数为n-xx,右括号数为n-yy,那么q的方案数为(n-xx,n-yy)->(n,n)的下矩阵格路径数,由第二个结论知方案数为(0,0)->(yy,xx)的下矩阵格路径数,p的方案数乘上q的方案数即为p的长度为lp且左括号比右括号多i个时的合法方案数
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 4444
#define mod 1000000007ll
int n,m;
char s[111111];
ll C[maxn][maxn],inv[maxn];
ll mod_pow(ll a,ll b,ll c)
{
ll ans=1;
while(b)
{
if(b&1)ans=1ll*ans*a%c;
a=1ll*a*a%c;
b>>=1;
}
return ans;
}
void init()
{
memset(C,0,sizeof(C));
C[0][0]=1;
for(int i=1;i<=4000;i++)
{
C[i][0]=C[i][i]=1;
for(int j=1;j<i;j++)
{
C[i][j]=C[i-1][j-1]+C[i-1][j];
if(C[i][j]>=mod)C[i][j]-=mod;
}
}
for(int i=1;i<=4000;i++)inv[i]=mod_pow(i,mod-2,mod);
}
ll Solve(int p,int q)
{
return 1ll*(p-q+1)*inv[p+1]%mod*C[p+q][p]%mod;
}
int main()
{
init();
while(~scanf("%d%d",&n,&m))
{
scanf("%s",s);
int num=0,Min=0;
for(int i=0;i<m;i++)
{
if(s[i]=='(')num++;
else num--;
Min=min(Min,num);
}
Min=abs(Min);
ll ans=0;
for(int p=0;p<=n-m;p++)
{
for(int i=Min;i<=p;i++)
if((p-i)%2==0)
{
ll temp=Solve((p+i)/2,(p-i)/2);
int q=n-m-p;
if(i+num>q||(q-i-num)%2)break;
temp=temp*Solve((q+i+num)/2,(q-i-num)/2)%mod;
ans+=temp;
if(ans>=mod)ans-=mod;
}
}
printf("%I64d\n",ans);
}
return 0;
}