HDU 5895 Mathematician QSC(中国剩余定理+欧拉函数+指数循环定理+矩阵快速幂)

本文介绍了一种利用矩阵快速幂技术和中国剩余定理解决特定形式的同余方程的方法。通过矩阵运算和快速指数计算,文章提供了一个高效的算法实现方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

定义f0=0,f1=1,fn=2fn1+fn2,n>1,gn=i=0nf2if0=0,f1=1,fn=2⋅fn−1+fn−2,n>1,gn=∑i=0nfi2

给出n,y,x,sn,y,x,s,求xgny%(s+1)xgny%(s+1)

Input

第一行一整数TT表示用例组数,每组用例输入四个整数n,y,x,sn,xn,x为八位数,yy为四位数,1s109

Output

输出结果

Sample Input

2
20160830 2016 12345678 666
20101010 2014 03030303 333

Sample Output

1
317

Solution

s=s+1s=s+1,对其质因子分解得s=pa11...pakks=p1a1...pkak,由于mi=paiimi=piai两两互素,只要可以求出所有的ri=xgny%miri=xgny%mi,由中国剩余定理即可求出答案,而由指数循环定理,xgny%mi=xgny%φ(mi)+φ(mi)%mi,gny>mixgny%mi=xgny%φ(mi)+φ(mi)%mi,gny>mi,故问题在于如何求gngn,由f2n=4f2n1+4fn1fn2+f2n2,fnfn1=2f2n1+fn1fn2fn2=4⋅fn−12+4⋅fn−1fn−2+fn−22,fnfn−1=2⋅fn−12+fn−1fn−2有转移

gnf2nf2n1fnfn1=1000441211004401gn1f2n1f2n2fn1fn2(gnfn2fn−12fnfn−1)=(1414041401000201)(gn−1fn−12fn−22fn−1fn−2)

矩阵快速幂加速转移即可

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
struct Mat
{
    ll mat[4][4];//矩阵 
    int row,col;//矩阵行列数 
};
Mat mod_mul(Mat a,Mat b,int p)//矩阵乘法 
{
    Mat ans;
    ans.row=a.row;
    ans.col=b.col;
    memset(ans.mat,0,sizeof(ans.mat));
    for(int i=0;i<ans.row;i++)      
        for(int k=0;k<a.col;k++)
            if(a.mat[i][k])
                for(int j=0;j<ans.col;j++)
                {
                    ans.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
                    ans.mat[i][j]%=p;
                }
    return ans;
}
Mat mod_pow(Mat a,ll k,int p)//矩阵快速幂 
{
    Mat ans;
    ans.row=a.row;
    ans.col=a.col;
    for(int i=0;i<a.row;i++)
        for(int j=0;j<a.col;j++)
            ans.mat[i][j]=(i==j);
    while(k)
    {
        if(k&1)ans=mod_mul(ans,a,p);
        a=mod_mul(a,a,p);
        k>>=1;
    }
    return ans;
}
ll extend_gcd(ll a,ll b,ll &x,ll &y)
{ 
    ll d=a;
    if(b!=0)
    {
        d=extend_gcd(b,a%b,y,x);
        y-=(a/b)*x;
    }
    else 
    {
        x=1;
        y=0;
    }
    return d;
}
ll CRT(int a[],int m[],int n)//a数组表示余数,m数组表示模数,n表示方程个数 
{
    ll M=1,Mi,ans=0,x,y,d;
    for(int i=0;i<n;i++)M*=m[i];
    for(int i=0;i<n;i++)
    {
        Mi=M/m[i];
        d=extend_gcd(Mi,m[i],x,y);
        ans=(ans+Mi*x*a[i])%M;
    }
    if(ans<0)ans+=M;
    return ans;
}
int get_euler(int n)
{
    int ans=n;
    for(int i=2;i*i<=n;i++)
        if(n%i==0)
        {
            ans=ans/i*(i-1);
            while(n%i==0)n/=i;
        }
    if(n>1)ans=ans/n*(n-1);
    return ans;
}
ll quick_pow(ll a,ll b,int p)
{
    a%=p;
    ll ans=1ll;
    while(b)
    {
        if(b&1)ans=ans*a%p;
        a=a*a%p;
        b>>=1;
    }
    return ans;
}
ll Solve(ll n,ll x,int p,int pp)
{
    ll ans;
    if(n==0)ans=0;
    else if(n==1)ans=1;
    else
    {
        Mat A;
        A.col=A.row=4;
        A.mat[0][0]=1,A.mat[0][1]=4,A.mat[0][2]=1,A.mat[0][3]=4;
        A.mat[1][0]=0,A.mat[1][1]=4,A.mat[1][2]=1,A.mat[1][3]=4;
        A.mat[2][0]=0,A.mat[2][1]=1,A.mat[2][2]=0,A.mat[2][3]=0;
        A.mat[3][0]=0,A.mat[3][1]=2,A.mat[3][2]=0,A.mat[3][3]=1;
        A=mod_pow(A,n-1,pp);
        ans=(A.mat[0][0]+A.mat[0][1])%pp;
    }
    return quick_pow(x,ans+pp,p);
}
int main()
{
    int T,n,x,s,y,a[33],m[33];
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d%d",&n,&y,&x,&s);
        s++;
        int res=0;
        for(int i=2;i*i<=s;i++)
            if(s%i==0)
            {
                int temp=1;
                while(s%i==0)temp*=i,s/=i;
                m[res]=temp,a[res++]=Solve(1ll*n*y,1ll*x,temp,get_euler(temp));
            }
        if(s>1)m[res]=s,a[res++]=Solve(1ll*n*y,1ll*x,s,s-1);
        ll ans=CRT(a,m,res);
        printf("%I64d\n",ans);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值