Newcoder 39 A.约数个数的和(水~)

本文探讨了一种高效算法,用于计算从1到n范围内所有整数的约数个数总和。通过分块加速技术,该算法能在短时间内得出精确结果,适用于n值高达10^8的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

给个nnn,求111nnn的所有数的约数个数的和~

Input

第一行一个正整数nnn

(1≤n≤108)(1\le n\le 10^8)(1n108)

Output

输出一个整数,表示答案

Sample Input

3

Sample Output

5

Solution

ans=∑i=1n⌊ni⌋ans=\sum\limits_{i=1}^n\lfloor\frac{n}{i}\rfloorans=i=1nin,分块加速或者直接求都行

Code

#include<cstdio>
using namespace std;
typedef long long ll;
int main()
{
	int n;
	scanf("%d",&n);
	ll ans=0;
	for(int i=1,pre;i<=n;i=pre+1)
	{
		pre=n/(n/i);
		ans+=1ll*(n/i)*(pre-i+1);
	}
	printf("%lld\n",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值