Newcoder 39 B.储物点的距离(水~)

本文探讨了在一个数轴上,如何快速计算将指定区间内的物品搬运到特定储物点的总成本。通过预处理储物点间距离及物品数量的前缀和,实现了O(1)时间复杂度的查询效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

一个数轴,每一个储物点会有一些东西,同时它们之间存在距离。

每次给个区间[l,r][l,r][l,r],查询把这个区间内所有储物点的东西运到另外一个储物点的代价是多少?

比如储物点iiixxx个东西,要运到储物点jjj,代价为x⋅dist(i,j)x\cdot dist( i , j )xdist(i,j)

distdistdist就是储物点间的距离。

Input

第一行两个数表示n,mn,mn,m

第二行n−1n-1n1个数,第iii个数表示第iii个储物点与第i+1i+1i+1个储物点的距离aia_iai

第三行nnn个数,表示每个储物点的东西个数bib_ibi

之后mmm行每行三个数x l rx\ l\ rx l r

表示查询要把区间[l,r][l,r][l,r]储物点的物品全部运到储物点xxx的花费

每次查询独立

(n,m≤2⋅105,0≤ai,bi≤2⋅109)(n,m\le 2\cdot 10^5,0\le a_i,b_i\le 2\cdot 10^9)(n,m2105,0ai,bi2109)

Output

对于每个询问输出一个数表示答案

答案对100000000710000000071000000007取模

Sample Input

5 5
2 3 4 5
1 2 3 4 5
1 1 5
3 1 5
2 3 3
3 3 3
1 5 5

Sample Output

125
72
9
0
70

Solution

x1=0,xi=xi−1+aix_1=0,x_i=x_{i-1}+a_ix1=0,xi=xi1+ai表示每个储物点的位置,把区间[l,r][l,r][l,r]的东西全部移动到xxx,相当于把区间[min(l,x),min(r,x)][min(l,x),min(r,x)][min(l,x),min(r,x)]的东西右移到xxx,把区间[max(l,x),max(r,x)][max(l,x),max(r,x)][max(l,x),max(r,x)]的东西左移到xxx,以左移为例,直接考虑把区间[l,r][l,r][l,r]的物品移动到k≤lk\le lkl位置的代价,即为
ans=∑i=lrbi⋅(xi−xk)=∑i=lrai⋅bi−xk⋅∑i=lrbi ans=\sum\limits_{i=l}^rb_i\cdot (x_i-x_k)=\sum\limits_{i=l}^ra_i\cdot b_i-x_k\cdot \sum\limits_{i=l}^rb_i ans=i=lrbi(xixk)=i=lraibixki=lrbi
故维护一下ai⋅bia_i\cdot b_iaibibib_ibi的前缀和即可O(1)O(1)O(1)查询

Code

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=200005;
#define mod 1000000007
int add(int x,int y)
{
	x+=y;
	if(x>=mod)x-=mod;
	return x;
}
int mul(int x,int y)
{
	ll z=1ll*x*y;
	return z-z/mod*mod;
}
int n,m,a[maxn],b[maxn],sum[maxn],res[maxn];
int main()
{
	scanf("%d%d",&n,&m);
	a[1]=0;
	for(int i=2;i<=n;i++)
	{
		int x;
		scanf("%d",&x);
		a[i]=add(x%mod,a[i-1]);
	}
	for(int i=1;i<=n;i++)scanf("%d",&b[i]),b[i]%=mod;
	for(int i=1;i<=n;i++)sum[i]=add(sum[i-1],mul(a[i],b[i]));
	for(int i=1;i<=n;i++)res[i]=add(res[i-1],b[i]);
	while(m--)
	{
		int l,r,x;
		scanf("%d%d%d",&x,&l,&r);
		int ll=max(l,x),rr=max(r,x);
		int ans=add(add(sum[rr],mod-sum[ll-1]),mod-mul(add(res[rr],mod-res[ll-1]),a[x]));
		ll=min(l,x),rr=min(r,x);
		ans=add(ans,add(mul(add(res[rr],mod-res[ll-1]),a[x]),add(sum[ll-1],mod-sum[rr])));
		printf("%d\n",ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值