Newcoder 39 C.回文串的交集(Manacher+组合数学)

本文介绍了一种高效算法,用于计算一个给定字符串中所有不同回文子串对的数量,特别关注那些有公共部分的子串对。算法通过使用Manacher算法预处理字符串,快速找到所有可能的回文子串,并利用前缀和优化计算过程,最终得出在模1000000007下的答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

给一个长为nnn 的只含小写字母的字符串

设总共有$ x$ 个回文连续子串

在这$ x$ 个子串中任选不同的两个,有公共部分的方案数

答案对 100000000710000000071000000007 取模

Input

第一行一个正整数nnn

第二行一个长为nnn的字符串

(n≤2⋅106)(n\le 2\cdot 10^6)(n2106)

Output

输出一个整数表示答案

Sample Input

4
babb

Sample Output

6

Solution

假设共有xxx个回文串,选出一对方案数为Cx2C_x^2Cx2,考虑选出一对不相交的方案数,对于所有以第iii个位置结尾的回文串,即为LiL_iLi,这些回文串与出现在[i+1,n][i+1,n][i+1,n]的一个子串中的回文串均不相交,记为Si+1S_{i+1}Si+1,那么答案即为Cx2−∑i=1n−1Li⋅Si+1C_x^2-\sum\limits_{i=1}^{n-1}L_i\cdot S_{i+1}Cx2i=1n1LiSi+1,故只要求出Li,SiL_i,S_iLi,Si即可,注意到SiS_iSi其实是所有以第jjj个位置开始的回文串的个数RjR_jRj的后缀和(j≥i)(j\ge i)(ji),故只用考虑求出以第iii个位置结束的回文串个数LiL_iLi和以第iii个位置开始的回文串个数RiR_iRi即可

对整个串跑一边ManacherManacherManacher,对于每个极长的回文串[l,r][l,r][l,r],其后半部分每个位置都会对LLL产生贡献,前半部分每个位置都会对RRR产生贡献,且贡献都是111,故用前缀和优化一下即可O(n)O(n)O(n)得到L,RL,RL,R,进而得到答案,注意到所有回文串个数x=S1x=S_1x=S1

Code

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=4000005;
#define mod 1000000007
int add(int x,int y)
{
	x+=y;
	if(x>=mod)x-=mod;
	return x;
}
int mul(int x,int y)
{
	ll z=1ll*x*y;
	return z-z/mod*mod;
}
char s[maxn],ss[maxn];
int ma[maxn];
void Manacher(char *s,int len)
{
	int l=0;
	ss[l++]='$';
	ss[l++]='#';
	for(int i=0;i<len;i++)
	{	
		ss[l++]=s[i];
		ss[l++]='#';
	}
	ss[l]=0;
	int mx=0,id=0;
	for(int i=0;i<l;i++)
	{
		ma[i]=mx>i?min(ma[2*id-i],mx-i):1;
		while(ss[i+ma[i]]==ss[i-ma[i]])ma[i]++;
		if(i+ma[i]>mx)
		{
			mx=i+ma[i];
			id=i;
		}
	}
}
int L[maxn],R[maxn];
int ID(int n)
{
	return (n-1)/2;
}
int main()
{
	int n;
	scanf("%d%s",&n,s);
	Manacher(s,n);
	for(int i=2;i<=2*n;i++)
	{
		int len=2*ma[i]-1;
		if(i&1)
		{
			if(len==1)continue;
			int l1=ID(i-len/2+1),r1=ID(i-1),l2=ID(i+1),r2=ID(i+len/2-1);
			R[l1]++,R[r1+1]--,L[l2]++,L[r2+1]--;
		}
		else
		{
			int l1=ID(i-len/2+1),r1=ID(i),l2=ID(i),r2=ID(i+len/2-1);
			R[l1]++,R[r1+1]--,L[l2]++,L[r2+1]--;
		}
	}
	for(int i=1;i<n;i++)L[i]+=L[i-1],R[i]+=R[i-1];
	for(int i=n-2;i>=0;i--)R[i]=add(R[i],R[i+1]);
	int ans=(ll)R[0]*(R[0]-1)/2%mod;
	for(int i=0;i<n-1;i++)ans=add(ans,mod-mul(R[i+1],L[i]));
	printf("%d\n",ans);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值