Description
给定长度为nnn的非负整数序列aaa,问有多少个长度为nnn的非负整数序列bbb,
满足:
bi≤aib_i\le a_ibi≤ai
b1 xor b2 xor ... xor bn=a1 xor a2 xor ... xor anb_1\ xor\ b_2\ xor\ ...\ xor\ b_n=a_1\ xor\ a_2\ xor\ ...\ xor\ a_nb1 xor b2 xor ... xor bn=a1 xor a2 xor ... xor an
答案对100000000910000000091000000009取模
Input
第一行一个正整数nnn
第二行nnn个非负整数aia_iai
(1≤n≤105,ai≤230)(1\le n\le 10^5,a_i\le 2^{30})(1≤n≤105,ai≤230)
Output
输出一个数字,表示答案
Sample Input
4
1 2 3 4
Sample Output
6
Solution
显然bbb序列和aaa序列相等为一种合法方案,对于其余方案,枚举使得某个bi<aib_i<a_ibi<ai的最高位lll,即a,ba,ba,b序列在比第lll位更高的位上均相同,而bib_ibi在第lll位是000而aia_iai在第lll位是111,显然bib_ibi可以在前lll位随意求值(均可保证bi<aib_i<a_ibi<ai)使得前lll位均满足异或和相等的限制,而其余n−1n-1n−1个数字在前lll位的取值只需保证不超过aaa序列即可,那么问题转化为求nnn个数字在第lll位取值使得bbb序列不超过aaa序列且至少存在一个位置使得bi<aib_i<a_ibi<ai的方案数
以dp[i][1/0][1/0]dp[i][1/0][1/0]dp[i][1/0][1/0]表示前iii个数字已经确定,他们在第lll位的异或和为1/01/01/0,且前iii个数字中存在/不存在一个使得bi<aib_i<a_ibi<ai的位置的方案数,考虑转移
一.若aia_iai在第lll位是111,那么bib_ibi在第lll位有两种选择
1.bib_ibi在第lll位取000,假设aia_iai前lll位的取值为xxx,那么只要bib_ibi在前lll位的取值不超过aia_iai即可,有x+1x+1x+1种方案,此时有转移
dp[i][j][k]+=dp[i−1][1−j][k]⋅(x+1)
dp[i][j][k]+=dp[i-1][1-j][k]\cdot (x+1)
dp[i][j][k]+=dp[i−1][1−j][k]⋅(x+1)
2.bib_ibi在第lll位取000,那么前lll位bib_ibi可以随意取,此时有转移
dp[i][j][1]+=dp[i−1][j][k]⋅2l
dp[i][j][1]+=dp[i-1][j][k]\cdot 2^l
dp[i][j][1]+=dp[i−1][j][k]⋅2l
二.若aia_iai在第lll位是000,那么bib_ibi在第lll位只能取000,且较低位不能超过aia_iai,此时有转移
dp[i][j][k]+=dp[i−1][j][k]⋅(x+1)
dp[i][j][k]+=dp[i-1][j][k]\cdot (x+1)
dp[i][j][k]+=dp[i−1][j][k]⋅(x+1)
那么对于当前考虑的位lll,对答案的贡献即为dp[n][res][1]2l\frac{dp[n][res][1]}{2^l}2ldp[n][res][1],其中resresres表示aia_iai在第lll位的异或和,除以2l2^l2l的原因是需要有一个严格小于aia_iai的bib_ibi,在其他n−1n-1n−1个数字在前lll位取值固定之后,bib_ibi的前lll位需要做对应的取值使得前lll位的异或和也和aaa序列相同
Code
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=100005;
#define mod 1000000009
int add(int x,int y)
{
x+=y;
if(x>=mod)x-=mod;
return x;
}
int mul(int x,int y)
{
ll z=1ll*x*y;
return z-z/mod*mod;
}
int Pow(int x,int y)
{
ll z=1;
while(y)
{
if(y&1)z=mul(z,x);
x=mul(x,x);
y>>=1;
}
return z;
}
int n,a[maxn],dp[maxn][2][2];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
int ans=1;
for(int l=30;l>=0;l--)
{
memset(dp,0,sizeof(dp));
dp[0][0][0]=1;
int res=0;
for(int i=1;i<=n;i++)
if((a[i]>>l)&1)
{
res^=1;
a[i]-=(1<<l);
for(int j=0;j<=1;j++)
for(int k=0;k<=1;k++)
{
dp[i][j^1][k]=add(dp[i][j^1][k],mul(dp[i-1][j][k],a[i]+1));
dp[i][j][1]=add(dp[i][j][1],mul(dp[i-1][j][k],1<<l));
}
}
else
{
for(int j=0;j<=1;j++)
for(int k=0;k<=1;k++)
dp[i][j][k]=add(dp[i][j][k],mul(dp[i-1][j][k],a[i]+1));
}
ans=add(ans,mul(dp[n][res][1],Pow(1<<l,mod-2)));
}
printf("%d\n",ans);
return 0;
}