Description
RekiRekiReki在课余会接受一些民间的鹰眼类委托,即远距离的狙击监视防卫。
RekiRekiReki一共接到了mmm份委托,这些委托与nnn个直线排布的监视点相关。
第iii份委托的内容为:对于区间[li,ri][l_i,r_i][li,ri]中的监视点,至少要防卫其中的kik_iki个。
RekiRekiReki必须完成全部委托,并且希望选取尽量少的监视点来防卫。
Input
第一行,两个正整数n,mn,mn,m。
接下来mmm行,每行三个整数li,ri,kil_i,r_i,k_ili,ri,ki。
(n≤5⋅105,m≤106,li≤ri,ki≤ri−li+1)(n\le 5\cdot 10^5,m\le 10^6,l_i\le r_i,k_i\le r_i-l_i+1)(n≤5⋅105,m≤106,li≤ri,ki≤ri−li+1)
Output
一行,一个整数,即所需防卫的最少监视点数量。
Sample Input
11 5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Sample Output
6
Solution
贪心,把所有区间按右端点排序,每次尽可能往右边放监视点,用树状数组维护监视点以便快速查询当前考虑区间是否合法,时间复杂度O(nlogn)O(nlogn)O(nlogn)
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=1000005;
struct BIT
{
#define lowbit(x) (x&(-x))
int b[maxn],n;
void init(int _n)
{
n=_n;
for(int i=1;i<=n;i++)b[i]=0;
}
void update(int x,int v)
{
while(x<=n)
{
b[x]+=v;
x+=lowbit(x);
}
}
int query(int x)
{
int ans=0;
while(x)
{
ans+=b[x];
x-=lowbit(x);
}
return ans;
}
}bit;
int n,m,vis[maxn];
struct node
{
int l,r,k;
bool operator<(const node&b)const
{
if(r!=b.r)return r<b.r;
if(l!=b.l)return l<b.l;
return k>b.k;
}
}a[maxn];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)scanf("%d%d%d",&a[i].l,&a[i].r,&a[i].k);
sort(a+1,a+m+1);
bit.init(n);
for(int i=1;i<=m;i++)
{
int l=a[i].l,r=a[i].r,k=a[i].k;
int num=bit.query(r)-bit.query(l-1);
if(num>=k)continue;
for(int j=r;j>=l;j--)
if(!vis[j])
{
vis[j]=1;
num++;
bit.update(j,1);
if(num==k)break;
}
}
printf("%d\n",bit.query(n));
return 0;
}