Newcoder 4 A.Contest(逆序对-BIT)

本文探讨了一种算法问题,涉及通过比赛排名确定队伍间的相对强度,并使用二元组逆序对概念计算特定条件下队伍组合的数量。算法采用时间复杂度为O(nlogn)的方法,通过计算每场比赛的排名逆序对来找出满足条件的队伍组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

nnn支队伍一共参加了三场比赛。

一支队伍xxx认为自己比另一支队伍yyy强当且仅当xxx在至少一场比赛中比yyy的排名高。

求有多少组(x,y)(x,y)(x,y),使得xxx自己觉得比yyy强,yyy自己也觉得比xxx强。

$ (x, y), (y, x)$算一组。

Input

第一行一个整数nnn,表示队伍数; 接下来nnn行,每行三个整数a[i],b[i],c[i]a[i], b[i], c[i]a[i],b[i],c[i],分别表示iii在第一场、第二场和第三场比赛中的名次;nnn 最大不超过200000200000200000

Output

输出一个整数表示满足条件的(x,y)(x,y)(x,y)数;64bit64bit64bit请用lldlldlld

Sample Input

4
1 3 1
2 2 4
4 1 2
3 4 3

Sample Output

5

Solution

(x,y)(x,y)(x,y)之间必然是xxx两败一胜或两胜一败,考虑因a,b,ca,b,ca,b,c其中之一败因a,b,ca,b,ca,b,c其中另一胜的二元组个数之和(即二元组逆序对个数),那么一组合法解(x,y)(x,y)(x,y)会被计算四次,所求答案除以四即为答案,时间复杂度O(nlogn)O(nlogn)O(nlogn)

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=200005;
struct BIT 
{
	#define lowbit(x) (x&(-x))
	int b[maxn],n;
	void init(int _n)
	{
		n=_n;
		for(int i=1;i<=n;i++)b[i]=0;
	}
	void update(int x,int v)
	{
		while(x<=n)
		{
			b[x]+=v;
			x+=lowbit(x);
		}
	}
	int query(int x)
	{
		int ans=0;
		while(x)
		{
			ans+=b[x];
			x-=lowbit(x);
		}
		return ans;
	}
}bit;
int n,x[3][maxn];
P a[maxn];
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)scanf("%d%d%d",&x[0][i],&x[1][i],&x[2][i]);
	ll ans=0;
	for(int i=0;i<3;i++)
		for(int j=0;j<3;j++)
			if(i!=j)
			{
				for(int k=1;k<=n;k++)a[k]=P(x[i][k],x[j][k]);
				sort(a+1,a+n+1);
				bit.init(n);
				for(int k=n;k>=1;k--)
				{
					ans+=bit.query(a[k].second);
					bit.update(a[k].second,1);
				}
			}
	printf("%lld\n",ans/4);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值