Newcoder 2 B.树(组合数学)

本文探讨了一道关于树结构的染色方案计数问题,给出了一种算法思路及其实现代码,通过组合数学和动态规划的方法求解特定条件下树上合法染色方案的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

shyshyshy有一颗树,树有nnn个结点。有kkk种不同颜色的染料给树染色。一个染色方案是合法的,当且仅当对于所有相同颜色的点对(x,y)(x,y)(x,y)xxxyyy的路径上的所有点的颜色都要与xxxyyy相同。请统计方案数。

Input

第一行两个整数n,kn,kn,k代表点数和颜色数; 接下来n−1n-1n1行,每行两个整数x,yx,yx,y表示xxxyyy之间存在一条边;

(n,k≤300)(n,k\le 300)(n,k300)

Output

输出一个整数表示方案数(mod 109+7)mod\ 10^9+7)mod 109+7

Sample Input

4 3
1 2
2 3
2 4

Sample Output

39

Solution

假设用了iii种颜色,不妨设根节点为111且染了第一种颜色,那么考虑其余i−1i-1i1种颜色的点中深度最小的i−1i-1i1个点,只要我们从剩余n−1n-1n1个点中任选i−1i-1i1个分别染这i−1i-1i1种颜色,那么该棵树的染色方案固定,故答案即为∑i=1nCn−1i−1⋅Aki\sum\limits_{i=1}^nC_{n-1}^{i-1}\cdot A_{k}^{i}i=1nCn1i1Aki

Code

#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn=305;
#define mod 1000000007
int add(int x,int y)
{
	x+=y;
	if(x>=mod)x-=mod;
	return x;
}
int mul(int x,int y)
{
	ll z=1ll*x*y;
	return z-z/mod*mod;
}
int n,k,C[maxn][maxn];
int main()
{
	scanf("%d%d",&n,&k);
	for(int i=1;i<n;i++)
	{
		int u,v;
		scanf("%d%d",&u,&v);
	}
	C[0][0]=1;
	for(int i=1;i<=n;i++)
	{
		C[i][0]=C[i][i]=1;
		for(int j=1;j<i;j++)C[i][j]=add(C[i-1][j-1],C[i-1][j]);
	}
	int A=1,ans=0;
	for(int i=0;i<n;i++)
	{
		A=mul(A,k-i);
		ans=add(ans,mul(A,C[n-1][i]));
	}
	printf("%d\n",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值