Description
shyshyshy有一颗树,树有nnn个结点。有kkk种不同颜色的染料给树染色。一个染色方案是合法的,当且仅当对于所有相同颜色的点对(x,y)(x,y)(x,y),xxx到yyy的路径上的所有点的颜色都要与xxx和yyy相同。请统计方案数。
Input
第一行两个整数n,kn,kn,k代表点数和颜色数; 接下来n−1n-1n−1行,每行两个整数x,yx,yx,y表示xxx与yyy之间存在一条边;
(n,k≤300)(n,k\le 300)(n,k≤300)
Output
输出一个整数表示方案数(mod 109+7)mod\ 10^9+7)mod 109+7)
Sample Input
4 3
1 2
2 3
2 4
Sample Output
39
Solution
假设用了iii种颜色,不妨设根节点为111且染了第一种颜色,那么考虑其余i−1i-1i−1种颜色的点中深度最小的i−1i-1i−1个点,只要我们从剩余n−1n-1n−1个点中任选i−1i-1i−1个分别染这i−1i-1i−1种颜色,那么该棵树的染色方案固定,故答案即为∑i=1nCn−1i−1⋅Aki\sum\limits_{i=1}^nC_{n-1}^{i-1}\cdot A_{k}^{i}i=1∑nCn−1i−1⋅Aki
Code
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn=305;
#define mod 1000000007
int add(int x,int y)
{
x+=y;
if(x>=mod)x-=mod;
return x;
}
int mul(int x,int y)
{
ll z=1ll*x*y;
return z-z/mod*mod;
}
int n,k,C[maxn][maxn];
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
}
C[0][0]=1;
for(int i=1;i<=n;i++)
{
C[i][0]=C[i][i]=1;
for(int j=1;j<i;j++)C[i][j]=add(C[i-1][j-1],C[i-1][j]);
}
int A=1,ans=0;
for(int i=0;i<n;i++)
{
A=mul(A,k-i);
ans=add(ans,mul(A,C[n-1][i]));
}
printf("%d\n",ans);
return 0;
}