educoder 决策树

这篇博客介绍了决策树的基本概念,包括信息熵和信息增益,并通过实例讲解了如何使用ID3算法构建决策树。同时,文章探讨了决策树的预剪枝和后剪枝策略,最后讨论了在Python的sklearn库中如何应用决策树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1关:什么是决策树

1.AB
2.B

第2关:信息熵与信息增益

import numpy as np


def calcInfoGain(feature, label, index):
    '''
    计算信息增益
    :param feature:测试用例中字典里的feature,类型为ndarray
    :param label:测试用例中字典里的label,类型为ndarray
    :param index:测试用例中字典里的index,即feature部分特征列的索引。该索引指的是feature中第几个特征,如index:0表示使用第一个特征来计算信息增益。
    :return:信息增益,类型float
    '''

    #*********** Begin ***********#

    # 计算熵
    def calcInfoEntropy(feature, label):
        '''
        计算信息熵
        :param feature:数据集中的特征,类型为ndarray
        :param label:数据集中的标签,类型为ndarray
        :return:信息熵,类型float
        '''

        label_set = set(label)
        result = 0
        for l in label_set:
            count = 0
            for j in range(len(label)):
                if label[j] == l:
                    count += 1
            # 计算标签在数据集中出现的概率
            p = count / len(label)
            # 计算熵
            result -= p * np.log2(p)
        return result

    # 计算条件熵
    def calcHDA(feature, label, index, value):
        '''
        计算信息熵
        :param feature:数据集中的特征,类型为ndarray
        :param label:数据集中的标签,类型为ndarray
        :param index:需要使用的特征列索引,类型为int
        :param value:index所表示的特征列中需要考察的特征值,类型为int
        :return:信息熵,类型float
        '''
        count = 0
        # sub_feature和sub_label表示根据特征列和特征值分割出的子数据集中的特征和标签
        sub_feature = []
        sub_label = []
        for i in range(len(feature)):
            if feature[i][index] == value:
                count += 1
                sub_feature.append(feature[i])
                sub_label.append(label[i])
        pHA = count / len(feature)
        e = calcInfoEntropy(sub_feature, sub_label)
        return pHA * e

    base_e = calcInfoEntropy
### 教育平台 Educoder 上的机器学习模型评估 在 Educoder 平台上进行机器学习模型的评估通常涉及多个键环节,这些环节包括但不限于数据集的导入使用、数据预处理、文本特征提取以及最终的模型评估过程[^1]。具体到模型评估部分,可以利用 Python 的 `scikit-learn` 库来实现多种评估指标。 #### 使用 scikit-learn 进行模型评估 `scikit-learn` 提供了丰富的工具来进行模型性能评估。常用的评估方法有交叉验证 (Cross Validation) 和直接计算评价指标两种方式: 1. **交叉验证**: 可以通过 `cross_val_score` 函数执行 k 折交叉验证,从而获得更稳健的模型表现估计。 ```python from sklearn.model_selection import cross_val_score from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy') print(f'平均准确率: {scores.mean():.2f}') ``` 2. **直接计算评价指标**: 如果已经划分好了训练集和测试集,则可以直接调用分类器对象的 `score` 方法或者手动计算各种评价指标(如精确度、召回率等)。 ```python from sklearn.metrics import accuracy_score, classification_report # 假设已有的训练好的决策树模型 clf 和 测试数据 X_test, y_test predictions = clf.predict(X_test) acc = accuracy_score(y_test, predictions) report = classification_report(y_test, predictions) print(f'准确率: {acc:.2f}') print('分类报告:') print(report) ``` 上述代码片段展示了如何基于 `DecisionTreeClassifier` 类构建并评估一个简单的分类模型[^2]。注意,在实际应用中可能还需要考虑更多细节,比如超参数调整、特征工程优化等问题。 另外值得注意的是,如果目标问题是多类别分类任务时,那么除了基本的准确性之外还应该注其他特定于该场景下的衡量标准,例如宏/微平均 F1 分数等等[^4]。 最后提醒一点,当涉及到复杂业务逻辑或大规模生产环境部署前务必做好充分测试工作,并且持续监控线上服务的表现情况以便及时发现问题所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值