educoder 机器学习 --- 模型评估、选择与验证

本文深入探讨了机器学习中的模型评估与选择问题,包括训练集与测试集的划分,欠拟合与过拟合的识别,偏差与方差的概念,验证集与交叉验证的使用,以及回归和分类任务的性能指标,如准确度、混淆矩阵、精准率、召回率、F1 Score、ROC曲线和AUC等,最后介绍了sklearn库中的相关评价工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1关:为什么要有训练集与测试集

1、D
2、A

第2关:欠拟合与过拟合

1、B
2、ABD

第3关:偏差与方差

1、B

第4关:验证集与交叉验证

1、D
2、BCD

第5关:衡量回归的性能指标

1、AB

第6关:准确度的陷阱与混淆矩阵

import numpy as np

def confusion_matrix(y_true, y_predict):
    '''
    构建二分类的混淆矩阵,并将其返回
    :param y_true: 真实类别,类型为ndarray
    :param y_predict: 预测类别,类型为ndarray
    :return: shape为(2, 2)的ndarray
    '''

    #********* Begin *********#
    def TN(y_true, y_predict):
        return np.sum((y_true == 0) & (y_predict == 0))
    def FP(y_true, y_predict):
        return np.sum((y_true == 0) & (y_predict == 1))
    def FN(y_true, y_predict):
        return np.sum((y_true == 1) & (y_predict == 0))
    def TP(y_true, y_predict):
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值