毕业设计-基于hive淘宝订单数据分析及可视化系统(案例分析)-附源码

     摘 要

本研究基于Python编程语言,利用数据分析和可视化技术,开发了一个淘宝订单数据分析及可视化系统。通过收集和清洗淘宝订单数据,我们运用Python中的数据分析库和可视化工具,对订单数据进行统计分析和图表化展示。通过这些工作,我们得到了对淘宝订单的深入洞察,发现了销售趋势、价格变动、用户购买行为等重要信息。

在本研究中,我们首先深入分析了淘宝订单数据分析及可视化系统的需求,制定了完整的设计理念。接下来,详细阐述了淘宝订单数据库的构建、查询功能以及展示方式。最后,对核心代码进行了详细的分析。

通过使用MySQL数据库存储订单数据,并结合Python编程语言的应用,本系统能够实现网站与数据库之间的动态交互,并将订单数据进行可视化展示。用户可以快速、准确地了解最新的淘宝订单情况,同时还可以通过折线图、柱形图等多种形式,对不同产品或时间段的订单数据进行对比和分析。通过图表的展示,用户可以更好地了解淘宝订单的销售趋势、价格变动以及用户购买偏好。

通过本研究的淘宝订单数据分析及可视化系统,用户可以更加全面地了解淘宝订单情况,做出更准确的决策。同时,系统还提供了图像和视频等形式的展示,帮助用户更好地理解淘宝订单数据。这对于商家和消费者来说都具有重要意义,能够提升他们在淘宝平台上的交易体验和经营效果。

关键词:淘宝订单数据分析及可视化系统;Python;MySQL;hive框架

ABSTRACT

This study is based on the Python programming language and utilizes data analysis and visualization techniques to develop a Taobao order data analysis and visualization system. By collecting and cleaning Taobao order data, we use Python's data analysis library and visualization tools to conduct statistical analysis and graphical display of order data. Through these efforts, we have gained in-depth insights into Taobao orders, discovering important information such as sales trends, price changes, and user purchasing behavior.

In this study, we first conducted an in-depth analysis of the requirements for Taobao order data analysis and visualization system, and developed a complete design concept. Next, the construction, query functions, and display methods of the Taobao order database were elaborated in detail. Finally, a detailed analysis was conducted on the core code.

By using MySQL database to store order data and combining it with the application of Python programming language, this system can achieve dynamic interaction between websites and databases, and visually display order data. Users can quickly and accurately understand the latest Taobao order situation, and can also compare and analyze order data from different products or time periods through various forms such as line charts and bar charts. Through the display of charts, users can better understand the sales trends, price changes, and purchasing preferences of Taobao orders.

Through the Taobao order data analysis and visualization system studied in this study, users can have a more comprehensive understanding of the Taobao order situation and make more accurate decisions. At the same time, the system also provides displays in the form of images and videos to help users better understand Taobao order data. This is of great significance for both merchants and consumers, as it can enhance their trading experience and business effectiveness on the Taobao platform.

Keywords: Taobao order data analysis and visualization system; Python; MySQL; Hive framework

    录

第一章 引言

第一节 研究背景与意义

第二节 研究现状

第三节 开发技术和开发特点

第四节  论文结构说明

第二章 需求分析

第一节 系统可行性分析

第二节 系统需求分析

第三节 系统流程

第四节 系统用例分析

第三章 系统总体设计

第一节 系统架构设计

第二节 系统顺序图设计

第三节 系统功能模块设计

第四节 数据库设计

第四章 关键模块的设计与实现

第一节 登录模块

第二节 用户管理模块

第三节 淘宝订单模块

第四节 销量信息模块

第五章 系统测试

第一节 系统测试的目的

第二节 系统测试用例

第三节 系统测试结果

第六章 结论

参考文献

致谢

第一章 引言

第一节 研究背景与意义

近年来,随着电子商务的快速发展,淘宝成为了中国最大的在线购物平台之一。在这个庞大的交易平台上,每天都产生着大量的订单数据。这些数据包含着宝贵的市场信息和消费者行为,对于企业了解市场趋势、优化产品策略和改进用户体验具有重要价值。

因此,开展淘宝订单数据分析及可视化系统的研究具有重要的背景和意义。通过对淘宝订单数据进行收集、清洗和分析,我们可以深入了解不同产品的销售情况、用户购买行为、市场竞争关系等。通过数据可视化技术,我们能够以直观的图表形式展现这些数据,帮助企业决策者更好地理解市场现状和趋势。具体而言,该研究可以帮助企业了解产品的热门销售时段、畅销产品系列以及用户的购买偏好等关键指标。基于这些信息,企业可以制定更精准的市场推广策略,优化产品设计和定价,提升用户体验,从而提高销售额和市场份额。此外,该研究还对行业发展和政策制定具有重要影响。通过对淘宝订单数据的综合分析,我们可以揭示不同产品之间的差异和竞争关系,帮助企业了解自身产品在市场上的优势和劣势。同时,这些研究成果也能够为相关部门和研究机构提供有益的参考,推动电子商务领域的研究和发展。

淘宝订单数据分析及可视化系统的研究背景与意义主要体现在了解市场趋势、优化产品策略、改进用户体验以及推动行业发展方面。通过深入挖掘和分析淘宝订单数据,我们能够更好地把握市场机遇,提高企业竞争力,并为整个电子商务领域的发展做出贡献

第二节 研究现状

目前,随着大数据技术的发展和数据分析的应用日益普及,淘宝订单数据分析及可视化系统的研究也得到了广泛关注和重视。许多研究者和企业都开始利用淘宝订单数据进行分析和挖掘,以获取有关市场趋势、消费者行为和产品竞争力等方面的重要信息。

在研究现状方面,已经有不少学术论文和商业案例涉及了淘宝订单数据的分析与可视化。这些研究从不同的角度入手,如销售趋势分析、用户购买行为模式识别、产品品类比较等,对淘宝订单数据进行了全面的探索。同时,研究者们还采用各种数据可视化技术,如折线图、柱状图、热力图等,将复杂的数据信息转化为直观且易于理解的可视化结果,为决策者提供了有价值的洞察和指导。

此外,一些企业也开始开发和应用淘宝订单数据分析及可视化系统,以实现对市场和业务的深入理解。这些系统通过整合淘宝订单数据和其他相关数据,运用数据挖掘、机器学习和可视化等技术,提供了实时的市场分析报告、用户画像分析、竞争对手分析等功能,帮助企业更好地制定营销策略和产品规划。

总体而言,淘宝订单数据分析及可视化系统的研究现状呈现出蓬勃发展的态势。研究者和企业都意识到了淘宝订单数据的重要性,并积极探索如何利用数据分析和可视化技术进行深入挖掘。随着技术的不断进步和应用场景的扩大,可以预见,淘宝订单数据分析及可视化系统的研究将会继续推进,为电子商务领域的决策和发展带来更多新的启示和突破。

第三节 开发技术和开发特点

一、爬虫技术

网络是搜索引擎获取Internet资讯的重要渠道。爬虫可以分为两类:传统型和聚焦型。传统爬虫通常会先收集一个或多个初始网页URL,然后根据这些URL进行爬取,并在队列中不断加入新的URL,直到到达一个具体的停留时间。也就是说需要的功能可以通过源代码分析技术来实现。

重点关注网页分析算法,通过过滤掉与主题无关的网页,只保留有价值的网页,然后把它们加入搜索引擎的URL队列中。接下来,它会根据特定的搜索策略,从队列中选择下一个要爬取的网页网址,并在系统设定的最终目标前不断重复这一过程。此外,系统还会对所有被爬虫抓取的网页进行存储,为方便爬虫查询检索的用户提供索引,并对其进行分析筛选。通过对FoucusCloud的分析,获取有价值的信息,从而有效地指导和建议今后的抓取工作。

二、B/S体系工作原理

采用B/S架构,浏览器为满足用户需求而发出请求,服务器响应迅速。

Internet上的用户可以轻松获取各种内容,包括文字、图像、动画、视频、音乐、游戏、社区、应用程序、搜索引擎、社区论坛等;

每台Web服务器可以通过多种方式与数据库服务器连接,从而更好地管理和分析数据库中存储大量的数据。

Web服务器可以将程序从外部下载到本地,当遇到与数据库相关的指令时,它会将其传递给数据库服务器,以便进行解释和执行,最终将结果反馈给用户。通过建立一个庞大的联系网络,使得世界各地的人们能够相互联系、共同分享信息和资源。通过这种架构,各家公司都能够创建属于自己的Internet网络。

B/S 模式下,用户可以从多台服务器发出请求,而这些服务器会根据用户的要求,自动处理和反馈,而其余的任务则交由Web Server来实现。随着该框架结构的普及,加上其内建的浏览器,在应用和使用广泛的当今软件应用领域,已经成为一种主流的架构。

图1-1 B/S 模式

三、 Mysql

Mysql数据库已经成为了一种强大的工具,能够在多个用户之间进行数据交换,同时还能够根据需要进行灵活的配置。在这种情况下,服务器与客户端的区别仅仅是软件层面的概念,与硬件设备并无直接联系。

Mysql是一款受推崇的关系型数据库管理系统,其优异的性能和易于操作的特性,以及跨越多个平台的能力,使Mysql成为了众多软件开发人员的第一选择。这种数据库不同于其他关系型数据库,它通过对用户权限和角色的设定,对数据库进行有效的控制和管理,具有一套独特的管理机制。Mysql显然是一款具有出色的容错能力、可靠性和高效率的数据库管理工具。

优势一:MySQL拥有独特的权限分配机制,能够根据用户的身份和业务逻辑为用户提供更多的选择,从而使MySQL的安全性和完整性大大提高,远超其它关系型数据库。

优势二:MySQL功能强大,可支持多种动画、图形、声音等多种数据类型,说明能满足多种数据处理需求。

优势三:MySQL具有多种功能,可以支持多种平台的开发,支持多种编程语言,让用户可以方便的访问和使用MySQL数据库。

四、 Navicat

Navicat是一套专为简化数据库的管理系统管理成本而设计的可靠的比那个还便宜的数据库管理工具。它的设计满足了中小型企业的数据库管理员,开发者和他们的需求。Navicat是以直觉化的图形用户界面而建的,让你可以以安全并且简单的方式创建、组织、访问并共用信息。NavicatforMySQL是一套理想的管理和开发MySQL或MariaDB的解决方案,支持单一程序,可同时连接MySQL和MariaDB,这种功能齐备的前端软件提供了直观、强大的数据库管理、开发和维护的图形界面,为MySQL或MariaDB新手和专业人员提供了一套综合的工具。Navicat for  Mysql可连接到任何本机或远程Mysql和MariaDB服务器。它可以用于Mysql数据库服务器版本3.21或以上和MariaDB5.0或以上,与Drizzle、OurDelta和Percona Server兼容。

五、前后端分离

(一)前端vue

Vue是一款轻巧、高效、渐进式的JavaScript框架,主要用于用户界面的构建,尤其适用于SPA开发。VueFramework采用组件化开发,可以让代码变得更加模块化,易于维护和使用,而且还支持双向绑定数据,虚拟DOM,模板渲染等高级特性,让开发更高效。Vue框架有以下几个优点:

优势一:VueFramework以简单易懂、入门门槛极低、无需太多前置知识基础、较为平缓的学习曲线为设计理念。

优势二:VueFramework采用了虚拟DOM技术,因此在数据更新时只会对改变的部分进行渲染,性能大幅提升。

优势三:VueFramework尺寸只有20KB左右,非常小巧,可以根据项目需要有选择的加载一些特性和插件。

优势四:基于VUE框架的插件和工具非常多,社群活跃,遇到问题可以快速解答并支持。

优势五:VUE框架的核心思想是组件化,可以把一个大的应用分成多个小的部件,这样既有利于代码的取用,又便于代码的维护。

总之,VUE框架非常适合中小型项目的快速搭建,还可以和其他框架、库进行组合,扩大使用前景。

(二)后端hive

hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。

第四节  论文结构说明

本文一共分为六章,每章具体内容介绍如下:

第一章,引言,首先介绍了淘宝订单数据分析及可视化系统的研究背景与意义,指出开发淘宝订单数据分析及可视化系统的研究现状,接着对该论文的结构进行说明。

第二章,需求分析,对系统进行可行性分析、系统功能需求分析以及非功能性需求分析等。

第三章,系统总体设计,通过对当前用户的需求分析来阐述该系统的整体架构以及数据库分析设计,确定各功能模块以及最终系统需要实现的功能。

第四章,关键模块的设计与实现,根据设计目标对各个主要功能模块分别进行详细设计,主要功能代码及其实现过程和功能界面设计。

第五章,系统测试,根据用户实际需求,对该系统主要功能模块进行测试。

第六章,结论

第二章 需求分析

第一节 系统可行性分析

一、技术可行性分析

淘宝订单数据分析及可视化系统在数据的存储上使用的MYSQL数据库,在淘宝订单数据分析及可视化系统开发中使用了了hive、pycharm、python这些开发工具的使用,能够给我们的编写工作带来许多的便利。系统采用B/S模式开发,使系统的可扩展性和维护性更好,减少系统配置代码以及编程代码,目前最流行的是B/S模式(B/SModel)

二、经济可行性分析

在开发淘宝订单数据分析及可视化系统中所使用的开发软件像pycharm开发工具、tomcat服务器、python开发框架、MySQL5.7数据库、Photoshop图片处理软件等,这些环境从网上就能免费下载,而且网上都有安装的教程,根据教程一步一步的操作,就可以安装成功,不需要花任何费用,并且淘宝订单数据分析及可视化系统是自己设计并编码实现的,数据库是使用流行mysql进行数据的存储,开源的mysql等技术的使用,减少系统开发费用。

三、操作可行性分析

首先,技术方面,淘宝订单数据分析及可视化系统需要使用到大量的数据采集,数据处理,数据存储等方面的技术支持。因此,在技术实现上需要较高的水平和丰富的经验。其次,数据采集方面,豆瓣网站对于数据的爬取有一定的限制,需要进行反爬虫处理。因此,在数据采集上需要有相应的技术手段,具有一定的难度。再次,在数据处理方面,采集到的数据需要经过筛选、转化、分析等环节的处理。需要使用一些数据处理和分析的工具,例如Python中的pandas、numpy等数据分析库。最后,还要平菇目标市场、分析系统使用用户是否充足,商业模式是否充足等等。

在这个项目的设计中,我借鉴了大量的成功案例,深入分析了它们的操作界面和功能,并结合了多个案例,以人为本,简化了操作,使本项目即使计算机基础知识的人也能轻而易举地完成。由于这些原因,这个操作是可行的。

第二节 系统需求分析

一、功能需求分析

淘宝订单数据分析及可视化系统分为两部分:管理员模块跟用户模块。

(一)管理员:

(1)登录:在数据库中直接设置管理员的用户名和密码,管理员可以在后台输入用户名+密码进行登陆操作。

(2)系统用户:管理员点击“系统用户”这一菜单会显示管理员和普通用户这两个子菜单,管理员可以对这两个角色的信息进行增删改查操作;

(4)淘宝订单:管理员点击“淘宝订单”会显示出所有的淘宝订单,支持输入商品标题或者销量信息查询淘宝订单,如欲新增淘宝订单,点击“添加”按钮,输入相关信息,点击“提交”按钮就可以添加了,同时可以选择某一条淘宝订单,同时可以选择某一条淘宝订单。

(5)销量信息:管理员点击“销量信息”会显示出所有的销量信息,支持通过输入品牌名称或者销量信息对销量信息进行查询,如果想要添加新的销量信息,点击“添加”按钮,输入相关信息,点击“提交”按钮就可以添加了,同时可以选择某一条销量信息,点击“删除”进行删除。

(6)价格信息:管理员点击“价格信息”会显示出所有的价格信息,支持通过输入品牌名称或者产品价格对价格信息进行查询,如果想要添加新的价格信息,点击“添加”按钮,输入相关信息,点击“提交”按钮就可以添加了,同时可以选择某一条价格信息,点击“删除”进行删除。

(二)普通用户:

(1)注册登录:在系统的右上角有登录+注册按钮,如果用户想要登录到系统当中,可以点击“登录”按钮,然后填写号用户名+密码,点击“登录”按钮,系统会对你的用户名密码进行核对,正确的话就会登录成功了,如果没有账号的话,可以点击右上角的“注册”按钮,然后根据提示输入好用户信息,就可以得到账号和密码了;

(2)销量信息:点击“销量信息”这个菜单,可以查看到系统中所有添加的销量信息,支持通过品牌名称或者销量信息对销量信息进行查询,如果想要了解某一销量信息的详细信息,点击后面的“详情”会进入详情界面;

(3)价格信息:点击“价格信息”这个菜单,可以查看到系统中所有添加的价格信息,支持通过品牌名称或者价格信息对价格信息进行查询,如果想要了解某一价格信息的详细信息,点击后面的“详情”会进入详情界面;

二、非功能性需求分析

淘宝订单数据分析及可视化系统的安全性、可靠性、性能和可扩展性是其重要的考量因素,它们不仅满足了用户对于功能性的要求,还为用户提供了更多的便利。根据表格2-1,我们可以清楚地看到这一点:

2-1 淘宝订单数据分析及可视化系统非功能需求表

安全性

主要指淘宝订单数据分析及可视化系统数据库的安装,数据库的使用和密码的设定必须合乎规范。

可靠性

可靠性是指淘宝订单数据分析及可视化系统能够安装用户的指示进行操作,经过测试,可靠性90%以上。

性能

性能是影响淘宝订单数据分析及可视化系统占据市场的必要条件,所以性能最好要佳才好。

可扩展性

比如数据库预留多个属性,比如接口的使用等确保了系统的非功能性需求。

易用性

用户只要跟着淘宝订单数据分析及可视化系统的页面展示内容进行操作,就可以了。

可维护性

淘宝订单数据分析及可视化系统开发的可维护性是非常重要的,经过测试,可维护性没有问题

第三节 系统流程

淘宝订单数据分析及可视化系统的系统流程可以分以下几个主要步骤:

1、数据采集:系统通过API接口或数据抓取技术,从淘宝平台获取订单数据。可以采集各种信息,如订单编号、购买商品、价格、支付方式、买家评价等。

2、数据清洗:对采集到的数据进行清洗和预处理,包括去除重复数据、处理缺失值、处理异常值等。确保数据的质量和准确性,以便后续的分析和可视化操作。

3、数据分析:运用数据分析方法和技术,对清洗后的数据进行统计分析、特征提取、关联分析等操作。可以使用Python中的数据分析库(如Pandas、NumPy)进行数据处理和计算。

4、可视化展示:利用可视化工具,将数据分析结果以图表、图像的形式进行展示。常用的可视化库包括Matplotlib、Seaborn等,通过绘制折线图、柱状图、散点图等,直观地展示产品销售价趋势、用户偏好等信息。

5、系统测试:对系统进行功能测试和性能测试,确保系统稳定性和可靠性。

三、系统流程

开发人员可以通过对上述业务流程的运用,以符合和线条的方式,对系统的运行机制进行更好的理解,并对用户在使用系统时的体验进行演示。另外,业务流程也能帮助开发者找到系统中的bug并且加以完善。

增添数据

当用户成功登录系统,即可获得指定的编号,这些编号由系统生成,而用户无权更改,只需要提供指定的编号,而其余的信息则需要由用户自行完成,完成之后,系统会对所提交的信息进行审核,如果审核结果符合要求,则表明增加数据已获得成功;否则,则说明未获得成功,如图2-1所示。

图2-1  数据增加流程图

修改数据

在数据修改过程中,与之前提到的数据增加过程相似,如图2-2所示。

图2-2  数据修改流程图

删除数据

当系统中出现了一些无效信息时,管理人员应采取措施将其删除处理,而图2-3则提供了删除这些无效信息过程的流程图。

图2-3  数据删除流程图

第四节 系统用例分析

淘宝订单数据分析及可视化系统中管理员角色用例图如图2-4所示:

图2-4管理员角色用例图

淘宝订单数据分析及可视化系统中普通用户角色用例图如图2-5所示:

            

图2-5普通用户角色用例图

第三章 系统总体设计

本章将深入探究淘宝订单数据分析及可视化系统的各种功能模块,以及如何构建一个高效的数据库。

第一节 系统架构设计

基于 python的淘宝订单数据分析及可视化系统由用户界面(UI)、业务流程层(BLL)、数据层(DL)三个层次组成。

图3-1淘宝订单数据分析及可视化系统架构设计图

表现层(UI):UI层是淘宝订单数据分析及可视化系统的核心部分,负责实现用户界面的交互,在使用该系统的过程中,为用户带来便捷的操作体验,让用户感受到更舒适的氛围。UI界面设计应该灵活应对各种不同的淘宝订单数据分析及可视化系统和尺寸,以确保良好的兼容性和可用性。UI交互功能必须具有合理性,以便用户能够获得与之相匹配的交互结果,因此,表现层必须与业务逻辑层紧密结合,以实现良好的交互体验。

业务逻辑层(BLL):BLL层(BLL)负责处理本豆瓣电影数据,并将其可视化处理,使电影内容得到更好的理解和分析。通过业务逻辑层,用户将数据转换为可供应用的格式,而系统则将这些格式转换为可供应用的格式,并将其发送到表现层。

数据层(DL):通过将mysql数据库作为数据层,实现豆瓣带你应数据分析可视化系统的全面架构,既负责数据的存储,又负责有效管理数据,使系统运行更加地稳定。

第二节 系统顺序图设计

一、登录模块

该模块旨在为管理人员和用户提供权限登录功能,其登录顺序如图3-2所示。

图3-2登录顺序图

二、添加信息模块

在登录之前,无论是管理员还是用户都能够轻松地完成添加信息的任务,具体的步骤请参考图3-3。

图3-3 添加信息顺序图

第三节 系统功能模块设计

淘宝订单数据分析及可视化系统整体的功能模块包括管理员这个模块,实现了对电影数据相关信息的查询管理,系统功能模块如图所示。

图3-4淘宝订单数据分析及可视化系统功能模块图

第四节 数据库设计

在数据库设计的三个主要步骤中,第一个是需求的分析,第二个是设计概念模型,最后是建立数据库表(datable-list)。在这三个步骤之间,需求分析是必不可少的,而概念模型的设计则涉及到概念模型与逻辑结构的设计。

一、数据库概念结构设计

下面是整个淘宝订单数据分析及可视化系统中主要的数据库表总E-R实体关系图。

           

图3-5 淘宝订单数据分析及可视化系统总E-R关系图

二、数据库逻辑结构设计

经过美妆产品的数据分析,我们发现,为了更好地展示E-R关系图,我们需要创建大量的数据表。我将重点介绍几种常见的数据库表结构设计方法。

表price_information (价格信息)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

price_information_id

int

10

0

N

Y

价格信息ID

2

brand_name

varchar

64

0

Y

N

品牌名称

3

product_price

int

10

0

Y

N

0

产品价格

4

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

5

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表regular_users (普通用户)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

regular_users_id

int

10

0

N

Y

普通用户ID

2

user_name

varchar

64

0

Y

N

用户姓名

3

user_gender

varchar

64

0

Y

N

用户性别

4

contact_phone_number

varchar

16

0

Y

N

联系电话

5

examine_state

varchar

16

0

N

N

已通过

审核状态

6

user_id

int

10

0

N

N

0

用户ID

7

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

8

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表sales_information (销量信息)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

sales_information_id

int

10

0

N

Y

销量信息ID

2

brand_name

varchar

64

0

Y

N

品牌名称

3

sales_information

int

10

0

Y

N

0

销量信息

4

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

5

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

表taobao_orders (淘宝订单)

编号

名称

数据类型

长度

小数位

允许空值

主键

默认值

说明

1

taobao_orders_id

int

10

0

N

Y

淘宝订单ID

2

product_title

varchar

64

0

Y

N

商品标题

3

product_price

int

10

0

Y

N

0

产品价格

4

details_link

text

65535

0

Y

N

详情链接

5

sales_information

varchar

64

0

Y

N

销量信息

6

brand_name

varchar

64

0

Y

N

品牌名称

7

origin_information

varchar

64

0

Y

N

产地信息

8

suitable_for_skin_type

varchar

64

0

Y

N

适合肤质

9

efficacy_information

varchar

64

0

Y

N

功效信息

10

create_time

datetime

19

0

N

N

CURRENT_TIMESTAMP

创建时间

11

update_time

timestamp

19

0

N

N

CURRENT_TIMESTAMP

更新时间

第四章 关键模块的设计与实现

基于前期对淘宝订单数据分析及可视化系统的需求分析以及整体架构,我们精心设计了一个页面,以便更好地展示出用户的行为,并且能够更加有效地实现业务逻辑。本文将重点介绍淘宝订单数据分析及可视化系统界面和业务逻辑。

一节 登录模块

管理员在淘宝订单模块输入账号+密码,点击“登录”按钮,系统在用户数据库表中会对管理员的账号进行匹配,账号+密码正确的话,就会登录到系统中各个用户的主管理界面,否则提示对应的信息,返回到登录的界面。

登录流程图如下所示。

        

图4-1 登录流程图

登录界面如下图所示。

图4-2 登录界面图

第二节 用户管理模块

用户只有注册后才能获得登录使用权限,此时选择注册用户选项,系统会自动转到用户注册。在注册该部分信息时,系统会自动调用ADD函数,然后在给出的文本框中填写完该用户的基本信息后,选择确认即可完成注册。注册后系统会自动转到检索用户信息,在新增用户信息以后,在检索工具栏中填写对应的用户信息,系统就会将该用户有关的所有信息展示出来。

用户管理流程图如下所示。

图4-3 用户管理流程图

用户管理界面如下图所示。

图4-4 产品分类管理模块图

第三节 淘宝订单模块

淘宝订单数据分析及可视化系统的淘宝订单可以通过ajax技术快速、准确地获取,用户可以根据自己的偏好和需求,快速地调整和更新相关的内容,从而满足用户的需求。此外,用户还可以根据自己的偏好,自由地调整和更新相关的内容,从而更好地满足用户的需求。当用户选择进行更新,系统会根据用户的id进行查询,然后将查询结果反馈给用户。用户可以在更新页面上更新所需的信息。用户点击更新按钮,from表单会把更新的内容发送给系统,然后系统会把这些内容保存到数据库中。

淘宝订单管理如下图所示。

图4-5淘宝订单管理界面图

第三节 销量信息模块

淘宝订单数据分析及可视化系统的销量信息可以通过ajax技术快速、准确地获取,用户可以根据自己的偏好和需求,快速地调整和更新相关的内容,从而满足用户的需求。此外,用户还可以根据自己的偏好,自由地调整和更新相关的内容,从而更好地满足豆瓣用户的需求。当用户选择进行更新,系统会根据用户的id进行查询,然后将查询结果反馈给用户。用户可以在更新页面上更新所需的信息。用户点击更新按钮,from表单会把更新的内容发送给系统,然后系统会把这些内容保存到数据库中。

销量信息管理如下图所示。

图4-6销量信息管理界面图

对销量数据进行统计,并以柱状图的形式呈现,通过这个柱状图用户可以直观的看到各个商品的订单对比,更加清晰了解每个商品销量的统计情况,这样的柱状图可以让用户了解商品的差异性,并更好地进行比较和选择。

图表可视化界面如下图所示:

图4-7销量信息数据统计

数据统计管理页面可查看品牌名称、产地信息、功效信息等信息操作如图所示:

         

图4-9产品信息界面

该条形图可以展示不同语言商品的价格,用户可以根据该图表了解当前各种商品价格的价格的分布情况。

图4-10图表可视化界面

第五章 系统测试

第一节 系统测试的目的

在系统开发的最后阶段,系统测试显得尤为重要,它不仅可以帮助我们更好地理解软件的设计,还能提高开发效率。由于系统开发过程中可能存在诸多缺陷,即使是最优秀的系统开发工程师也无法避免这些缺陷。因此,通过进行系统测试,我们可以有效地纠正这些bug,从而为后续的系统维护和升级提供有力的支持。经过严格的系统测试,开发者们能够更加坚定地认识到系统的性能,从而更有动力去推动后续的系统更新。

第二节 系统测试用例

系统测试包括:用户登录功能测试、销量信息展示功能测试、销量信息添加、销量信息搜索、密码修改功能测试,如表5-1、5-2、5-3、5-4、5-5所示:

用户登录功能测试:

表5-1 用户登录功能测试表

用例名称

用户登录系统

目的

测试用户通过正确的用户名和密码可否登录功能

前提

未登录的情况下

测试流程

1) 进入登录页面

2) 输入正确的用户名和密码

预期结果

用户名和密码正确的时候,跳转到登录成功界面,反之则显示错误信息,提示重新输入

实际结果

实际结果与预期结果一致

销量信息查看功能测试:

表5-2 销量信息查看功能测试表

用例名称

销量信息查看

目的

测试销量信息查看功能

前提

用户登录

测试流程

点击销量信息列表

预期结果

可以查看到所有销量信息

实际结果

实际结果与预期结果一致

管理员添加销量信息界面测试:

表5-3 管理员添加销量信息界面测试表

用例名称

销量信息发布测试用例

目的

测试销量信息发布功能

前提

用户正常登录情况下

测试流程

1)点击销量信息管理就,然后点击添加后并填写信息。

2)点击进行提交。

预期结果

提交以后,页面首页会显示新的销量信息 

实际结果

实际结果与预期结果一致

销量信息搜索功能测试:

表5-4销量信息搜索功能测试表

用例名称

销量信息搜索测试

目的

测试销量信息搜索功能

前提

测试流程

1)在搜索框填入搜索关键字。

2)点击搜索按钮。

预期结果

页面显示包含有搜索关键字的销量信息

实际结果

实际结果与预期结果一致

密码修改功能测试:

表5-5 密码修改功能测试表

用例名称

密码修改测试用例

目的

测试管理员密码修改功能

前提

管理员用户正常登录情况下

测试流程

1)管理员密码修改并完成填写。

2)点击进行提交。

预期结果

使用新的密码可以登录

实际结果

实际结果与预期结果一致

第三节 系统测试结果

经过对淘宝订单数据分析及可视化系统的测试,我们已经完成了5大模块的检测,包括用户登录、销量信息查看、销量信息添加、销量信息搜索以及密码修改功能,这些功能为后续的推广运营提供了强有力的技术支持。

第六章 结论

在开发本淘宝订单数据分析及可视化系统之前我胸有成竹,觉得很简单,但在实际的开发中我发现了自身的很多问题,许多编程思想和方法都还没有掌握牢靠,比如python、pycharm、HbuildX等许多python Web开发技术,通过开发这个淘宝订单数据分析及可视化系统我成长了很多,懂得了做什么事情都要脚踏实地,不能眼高手低,在本次淘宝订单数据分析及可视化系统的开发中我逐渐掌握逐渐熟悉的技术。

本次淘宝订单数据分析及可视化系统的开发中我还学会了很多,例如良好的编程思想和完善的规划思想。在着手编程之前需要罗列出程序框架的大概,脑海中构建出程序的主题框架。只有这一步做好了,才能让经行发展的项目胸有成竹。当设计框架了熟于心之后,需要思考本次编程所需的主要知识点和技术点,并充分学习。如此一来项目的开发才能循序渐进、如丝般顺滑,长久以往就能养成良好的开发习惯。一个程序好不好还要看出的bug多不多,如果在项目完成前做好bug的查验与预防可能发生的事故才能保证程序的稳定长久性运行。如果项目在完工后出现各种问题自己,那么在进入社会后,不仅会给公司团队带来麻烦和增加不必要的工作,还会导致客户流失,公司对自己的评价下降。

在本次项目中我也暴露了诸多问题。缺乏一些Python的编程知识,并且在环境配置和算法上的问题也有很多,经常造成项目操作失误,或者没法完成想要实现的功能目标等问题。或者实现想法时算法未优化,使得代码冗长,程序运行不顺畅。

参考文献

[1]白志勇,景伟,田亚荣等. 可视化数据分析系统[P]. 内蒙古自治区: CN117539950A, 2024-02-09.

[2]谢宇鹏,骆昱宇,冯建华. Navi:基于自然语言交互的数据分析系统 [J/OL]. 软件学报, 1-13[2024-03-09]. https://doi.org/10.13328/j.cnki.jos.007074.

[3]王蔷,郭琪. 基于Python语言的微博网络数据可视化系统设计与应用 [J]. 电脑编程技巧与维护, 2023, (11): 101-104.

[4]余云龙,陶启果. 基于Minitab的数据分析和可视化系统的设计与开发 [J]. 印制电路信息, 2023, 31 (S2): 102-106.

[5]吴黄鑫,王强,关兴彩. 高纯锗探测器实验的可视化数据分析系统 [J]. 大学物理实验, 2023, 36 (05): 102-107.

[6]Xiao Z ,Ali Y ,Xin W , et al. Sports Work Strategy of College Counselors Based on MySQL Database Big Data Analysis [J]. International Journal of Information Technology and Web Engineering (IJITWE), 2023, 18 (1): 1-14.

[7]姜永成. 基于Django的网络招聘数据可视化分析系统的设计与实现 [J]. 科技资讯, 2023, 21 (19): 57-60.

[8]Karthik G ,Debashish M ,Jagoda C , et al. Developing a MySQL Database for the Provenance of Black Tiger Prawns (Penaeus monodon). [J]. Foods (Basel, Switzerland), 2023, 12 (14):

[9]Sunday O B ,Nduka O S . MySQL Database Server: Deploying Software Application to Enhance Visibility and Accountability [J]. Current Journal of Applied Science and Technology, 2023, 42 (4): 16-23.

[10]张坤宇, 卓朗政务大数据可视化系统[简称:政务大数据]V1.1. 天津市, 天津卓朗科技发展有限公司, 2022-05-10.

[11]赵淑晨. 个人信贷数据可视化分析系统的设计与实现[D]. 北京邮电大学, 2021.

[12]Sriratana W ,Khagwian V ,Satthamsakul S . Analysis of Electric Current by Using MySQL Database on Web Server for Machine Performance Evaluation: A Case Study of Air Conditioning System [J]. 제어로봇시스템학회 국제학술대회 논문집, 2020,

[13]朱淑鑫,李悦,袁培森等. 基于Hadoop/Hive的乳制品溯源数据计算及性能优化 [J]. 华东师范大学学报(自然科学版), 2019, (04): 99-108.

[14]张锐. 基于Hive数据仓库的物流大数据平台的研究与设计 [J]. 电子设计工程, 2019, 25 (09): 31-35.

[15]廖雪花,任春华,唐思娩. 基于Hive架构的物流供应链运力异构数据整合研究 [J]. 物流技术, 2019, 36 (03): 168-171.

[16]崔丹阳. 基于HTML5的数据可视化系统分析与研究[D]. 北京邮电大学, 2019.

致谢

到此,整个淘宝订单数据分析及可视化系统就算完成了,虽然过程十分艰难,但是等到都完成的时候,我感觉无比的自豪,虽然设计的系统还存在许多的纰漏,但是我已经拼劲全力,给自己的大学四年画上了一个圆满的句号。写到这里有许多思绪想要表达,但是回首大学四年的学习生涯,才发现留在记忆里的东西就像无穷无尽的代码一样多,用言语很难表达出所念所想,但是有一些最重要的感谢话还是要表达出来。

在这里我首先要感谢的就是大学四年来所有教过我的老师,是他们教会了我很多的专业知识和做人的道理,从一进校门对开发系统的一窍不通,对于老师所留的结课作业总是抱怨累心难做,到现在能自主开发一个管理系统,里面包含了前台框架、后台框架、业务流程、我非常感激我的指导老师们,在大学期间你们帮助我掌握了数据挖掘,数据结构、操作系统等各种知识,并且让我能够将它们统一运用,最终完成了整个系统。在开发这个系统的过程中,我遇到了无数的问题,但是无论是线上还是线下,我都会向导师寻求帮助,而导师也总是耐心地指导我如何实现这个功能,如何让系统变得更加完善,最终,我也通过自己查阅相关资料,解决了许多问题。通过“老师,谢谢您,您辛苦了”的指导,我大大提升了自身的解决问题的能力,比起传授知识,更重要的是,它让我受益匪浅,我将继续努力,向老师学习,让自己的智慧得到更大的发挥!最后我还要感谢我的室友、同学,在一起学习这四年,他们不但学习上给了我很多建议,在生活上更加给了我帮助,正是有他们的帮助,我的大学生涯才如此完美。

最后,希望自己在未来的道路上能够越走越远,不辜负在大学的学习以及老师们的细致的教导,追风赶月莫停留,平荒尽处是春山。

点赞+收藏+关注  →私信领取本源代码、数据库

关注博主下篇更精彩
一键三连!!!
一键三连!!!
一键三连!!!
感谢一键三连!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值