【机器学习深度解析】第一章 机器学习导论:从理论到实践的深度解析

目录

第一部分:原理详解

1.1机器学习是什么?

学习过程的数学形式化

AI、机器学习、深度学习的关系

1. 人工智能 (AI): 终极的梦想 —— “殖民火星”

2. 机器学习 (ML): 可行的核心战略 —— “可回收火箭技术”

3. 深度学习 (DL): 革命性的技术突破 —— “猛禽发动机”

总结对比

1.2 机器学习的分类 (含数学视角)

1.3 机器学习项目的一般流程 (细节展开)

1.4 核心概念:偏差与方差

1.6 数学基础回顾

概率论与统计

第二部分  实战案例:问题定义

机器学习问题一:用户流失预测 (防流失策略)

机器学习问题二:个性化商品推荐 (促活跃策略)

案例实现

项目挑战与解决方案概览

步骤一:环境准备与数据加载

步骤二:数据探索与预处理 (关键步骤)

2.1 数据清洗与转换

2.2 类别不平衡分析

2.3 构建高效的预处理流水线 (Pipeline)

步骤三:模型训练与不平衡数据处理

步骤四:模型评估与结果分析

步骤五:超参数调优 (GridSearchCV)

第三部分:代码实现

核心:通过交叉验证评估模型并绘制学习曲线

学习曲线分析

进阶:使用正则化控制过拟合

正则化效果分析


第一部分:原理详解

1.1机器学习是什么?

我们曾定义机器学习是让计算机从数据中“学习”。一个更严谨的定义由卡内基梅隆大学的 Tom Mitchell 教授提出:“对于某类任务 T 和性能度量 P,如果一个计算机程序在 T 上以 P 作为性能度量的经验 E 中学习,那么就说这个程序能够学习。它的性能,在任务 T 上,会随着经验 E 的增加而提高。”

  • 任务 (Task, T): 例如,进行图片分类。

    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值