激活函数:sigmod、tanh、ReLU、ELU、PReLU

本文详细介绍了sigmod、tanh、ReLU及其变种等激活函数的特点与应用场景,对比了它们各自的优缺点,并探讨了如何选择合适的激活函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. sigmod函数

函数公式和图表如下图

在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率。sigmod函数曾经是比较流行的,它可以想象成一个神经元的放电率,在中间斜率比较大的地方是神经元的敏感区,在两边斜率很平缓的地方是神经元的抑制区。

当然,流行也是曾经流行,这说明函数本身是有一定的缺陷的。

  1. 当输入稍微远离了坐标原点,函数的梯度就变得很小了,几乎为零。在神经网络反向传播的过程中,我们都是通过微分的链式法则来计算各个权重w的微分的。当反向传播经过了sigmod函数,这个链条上的微分就很小很小了,况且还可能经过很多个sigmod函数,最后会导致权重w对损失函数几乎没影响,这样不利于权重的优化,这个问题叫做梯度饱和,也可以叫梯度弥散。

  2. 函数输出不是以0为中心的,这样会使权重更新效率降低。对于这个缺陷,在斯坦福的课程里面有详细的解释。

  3. sigmod函数要进行指数运算,这个对于计算机来说是比较慢的。


2.tanh函数

tanh函数公式和曲线如下

tanh是双曲正切函数,tanh函数和sigmod函数的曲线是比较相近的,咱们来比较一下看看。首先相同的是,这两个函数在输入很大或是很小的时候,输出都几乎平滑,梯度很小,不利于权重更新;不同的是输出区间,tanh的输出区间是在(-1,1)之间,而且整个函数是以0为中心的,这个特点比sigmod的好。

一般二分类问题中,隐藏层用tanh函数,输出层用sigmod函数。不过这些也都不是一成不变的,具体使用什么激活函数,还是要根据具体的问题来具体分析,还是要靠调试的。


3.ReLU函数

ReLU函数公式和曲线如下

ReLU(Rectified Linear Unit)函数是目前比较火的一个激活函数,相比于sigmod函数和tanh函数,它有以下几个优点:

  1. 在输入为正数的时候,不存在梯度饱和问题。

  2. 计算速度要快很多。ReLU函数只有线性关系,不管是前向传播还是反向传播,都比sigmod和tanh要快很多。(sigmod和tanh要计算指数,计算速度会比较慢)

当然,缺点也是有的:

  1. 当输入是负数的时候,ReLU是完全不被激活的,这就表明一旦输入到了负数,ReLU就会死掉。这样在前向传播过程中,还不算什么问题,有的区域是敏感的,有的是不敏感的。但是到了反向传播过程中,输入负数,梯度就会完全到0,这个和sigmod函数、tanh函数有一样的问题。

  2. 我们发现ReLU函数的输出要么是0,要么是正数,这也就是说,ReLU函数也不是以0为中心的函数。


4.ELU函数

ELU函数公式和曲线如下图

ELU函数是针对ReLU函数的一个改进型,相比于ReLU函数,在输入为负数的情况下,是有一定的输出的,而且这部分输出还具有一定的抗干扰能力。这样可以消除ReLU死掉的问题,不过还是有梯度饱和和指数运算的问题。


5.PReLU函数

PReLU函数公式和曲线如下图

PReLU也是针对ReLU的一个改进型,在负数区域内,PReLU有一个很小的斜率,这样也可以避免ReLU死掉的问题。相比于ELU,PReLU在负数区域内是线性运算,斜率虽然小,但是不会趋于0,这算是一定的优势吧。

我们看PReLU的公式,里面的参数α一般是取0~1之间的数,而且一般还是比较小的,如零点零几。当α=0.01时,我们叫PReLU为Leaky ReLU,算是PReLU的一种特殊情况吧。


6、小结

总体来看,这些激活函数都有自己的优点和缺点,没有一条说法表明哪些就是不行,哪些激活函数就是好的,所有的好坏都要自己去实验中得到。

这只是部分激活函数,还有许多没有列举,如果在实际应用中,你觉得还有改进的空间,这些都是可以自己设定的,你也可以设计出自己的激活函数。

### 不同激活函数的特点 #### ReLU (Rectified Linear Unit) ReLU 函数定义如下: \[ f(x) = \max(0, x) \] 该函数对于正数输入返回其本身,而对于负数则将其截断为零。这种特性使得 ReLU 能够有效缓解梯度消失问题,并加速收敛过程[^3]。 ```python def relu(x): return max(0, x) ``` #### Sigmoid Sigmoid 函数表达式为: \[ f(x)=\frac{1}{1+e^{-x}} \] 此函数会将任意实数值压缩至 $(0, 1)$ 区间内,在早期的二分类任务中较为常用。不过由于饱和区的存在容易引发梯度弥散现象,因此现在更多地被其他类型的激活单元所取代[^1]。 ```python import math def sigmoid(x): return 1 / (1 + math.exp(-x)) ``` #### Tanh (Hyperbolic Tangent) Tanh 函数形式如下所示: \[ f(x)=\tanh(x)=\frac{(e^{x}-e^{-x})}{(e^{x}+e^{-x})} \] 相比 Sigmoid 来说,Tanh 可以把数据映射到 $[-1, 1]$ 这样一个范围之内,有助于中心化后续层的数据分布;但是同样面临类似的梯度衰减难题[^2]。 ```python import math def tanh(x): pos_exponent = math.exp(x) neg_exponent = math.exp(-x) return (pos_exponent - neg_exponent) / (pos_exponent + neg_exponent) ``` ### 应用场景对比 - **ReLU**: 更适合深层网络结构中的隐藏层使用,因为其简单高效的性质能促进快速训练而不易陷入局部极小值。此外,ReLU 的变体如 Leaky ReLU 或 Parametric ReLU 解决了一般 ReLU 单侧抑制带来的死神经元问题。 - **Sigmoid**: 主要应用于逻辑回归模型或是作为输出层针对概率预测的任务里,比如二分类问题。当需要得到介于 0 到 1 之间的概率估计时尤为适用。 - **Tanh**: 常见于 RNN 类型的时间序列分析当中,尤其是在 LSTM 结构之前用来预处理输入特征向量的情况较多。另外,在某些特定领域像图像识别等领域也有一定应用价值。 综上所述,不同种类的激活函数各有优劣之处,具体选用哪一种取决于实际项目需求以及待解决问题的本质属性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ViatorSun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值