次方求模

次方求模(快速幂取模算法)

对于问题:求a的b次方取c的模的值,当a,b很大时,直接求解显然是不太现实的。但是,这个问题如果使用公式就变得可解,并且容易计算。
由公式:a^b mod c = (a mod c)^b mod c
<1>递归算法:
#include <stdio.h>

long long int fun (long long int a,long long int b,long long int c);

int main(void)
{
    long long int a,b,c;
    int n;
    scanf("%d",&n);
    while (n--)
    {
        scanf("%lld%lld%lld",&a,&b,&c);
        printf("%lld\n",fun(a,b,c));
    }
    return 0;
}

long long int fun(long long int a,long long int b,long long int c)
{
    long long int ans;
    ans = 1;
    if (b == 0) return 1 % c;
    if (b == 1) return a % c;
    ans = fun(a,b/2,c);
    ans = ans * ans % c;
    if (b % 2 == 1) ans = ans * a % c;
    return ans;
}
<2>循环算法:
#include <stdio.h>
int fun(long long int a,long long int b,long long int c);
int main(void)
{
	int n;
	long long int a,b,c;
	scanf("%d",&n);
	while(n--)
	{
		scanf("%lld%lld%lld",&a,&b,&c);
	     printf("%d\n",fun(a,b,c));
	}
	return 0;
}

int fun(long long int a,long long int b,long long int c)
{
	int ans = 1;
	a = a % c;
	while (b > 0)
	{
		if (b % 2 == 1)
		  ans =ans * a % c;
	    a =a * a % c;
    	b /= 2;
	}
	return ans;
}
运用这种办法即使a,b的值达到100万也照样可以计算,所以这是很有效的算法。
本例所使用的所有编程语言均为C语言。
### 计算数字的次方运算 #### 使用 Python 实现 在 Python 中,可以利用内置的 `**` 运算符或者 `pow()` 函数来完成次方运算。以下是两种方法的具体实现: ```python # 方法一:使用 ** 运算符 base = 2 exponent = 3 result = base ** exponent print(f"{base} 的 {exponent} 次方等于 {result}") # 输出结果为 8 [^1] # 方法二:使用 pow() 函数 result_pow = pow(base, exponent) print(f"使用 pow 函数的结果: {result_pow}") # 输出结果同样为 8 ``` #### 使用 C 语言实现 对于 C 语言而言,可以通过引入 `<math.h>` 头文件中的 `pow()` 函数来进行次方运算。 ```c #include <stdio.h> #include <math.h> int main() { double base = 2; int exponent = 3; double result = pow(base, exponent); printf("%.0f 的 %.0f 次方等于 %.0f\n", base, (double)exponent, result); // 输出结果为 8 [^2] return 0; } ``` 需要注意的是,在实际应用中可能遇到精度问题,尤其是当指数较大时可能导致数溢出或浮点误差。 #### MySQL 数据库环境下的幂运算 MySQL 提供了直接支持幂运算的功能,通过使用 `POW(x,y)` 或者 `POWER(x,y)` 来表示 \(x\) 的 \(y\) 次幂。 ```sql SELECT POW(2, 3) AS Result; -- 结果返回 8 [^3] ``` 此外,还可以采用更简洁的形式表达相同逻辑: ```sql SELECT POWER(2, 3) AS Result; -- 同样返回 8 [^3] ``` #### Java 编程中的高精度处理 针对需要更高精确度的情况(如金融领域),推荐使用 Java 的 `BigDecimal` 类型配合自定义算法完成幂运算操作。由于标准库未提供直接的方法解决这一需,因此通常采迭代方式逐步累积乘积直至达到目标次数为止。 ```java import java.math.BigDecimal; public class Main { public static void main(String[] args){ BigDecimal base = new BigDecimal("2"); int exp = 3; BigDecimal result = BigDecimal.ONE; while(exp-- > 0){ result = result.multiply(base); } System.out.println(result.toString()); // 打印输出应显示为 '8' } } ``` #### 密码学场景下的幂优化技术 特别得注意的一类问题是关于大整数范围内的快速幂计算,这常见于加密解密过程之中。例如 RSA 加密体系就依赖于此种高效算法降低复杂度。下面给出基于分治策略的一个简单例子演示其原理: ```c long long mod_exp(long long b, unsigned e, unsigned m){ if(e==0)return 1%m; long long t=mod_exp(b*b %m ,e/2,m ); if(e&1)t=t *b %m ; return t ; } // 调用实例 printf("%lld\n",mod_exp(2,16,7)); // 应该打印余数而非真实本身 [^4] ``` 上述代码片段展示了如何仅执行少量乘法即可获得较大的幂次效果,并且还能保持较小的空间占用率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值