动态规划——股票问题全解

文章通过一系列股票交易问题,介绍了如何使用动态规划方法求解最大利润。关键在于分析持有、不持有以及可能的交易状态,建立状态转移方程,并给出具体代码实现。问题包括:一次交易、多次交易、限制交易次数和包含交易费用的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引入

股票问题是一类动态问题,我们需要对其状态进行判定分析来得出答案

但其实,我们只需要抓住两个点,持有和不持有,在这两种状态下分析问题会简单清晰许多

下面将会对各个问题进行分析讲解,来解释什么是持有和不持有状态,并在分析后得到题目的解答​​​​​​​买卖股票的最佳时机


1、​​​​​​​买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

分析:

我们了解到这道题,只能够购买和卖出一次,那么,

持有的状态只有两种情况:1.之前就持有  2.今天刚买入

不持有也有两种情况:1.昨天就不持有 2.今天刚出售

1.dp空间

通过以上的分析我们可以知道,解决这个问题我们需要了解:

1.今天的价格  2.昨天的状态

所以,我们需要两对空间,保存两对持有与不持有状态

即一个2*2大小的数组

vector<vector<int>> dp(2, vector<int>(2));

2.初始状态

其中dp[i][0] 代表第i天的持有状态下的资金数

        dp[i][1] 代表第i天的不持有状态下的资金数

由此我们也可以知道,第一天的持有状态只能是进行买入 即 -prices[0]

                                                   不持有状态只能是0

所以初始状态我们也有了

dp[0][0] = -prices[0];
dp[0][1] = 0;

3.递推公式

由刚开始的分析其实我们已经知道了递推公式,现在只需要进行代码实现即可:

先使用伪代码描述

当天持有股票的最大金额 = max(昨天就持有时的资金数,今天刚买入后所拥有的资金)

当天不持有股票的最大金额 = max(昨天就不持有时的资金数,今天刚卖出后所拥有的资金)

代码实现

其中的取模运算是为了获得之前的状态而不用进行数据移动

//因为只进行一次买入卖出,所以当前买入一定是 0 - prices[i]
dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);

4.题解代码 

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(2, vector<int>(2)); 
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
            dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
        }
        return dp[(len - 1) % 2][1];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值