引入
股票问题是一类动态问题,我们需要对其状态进行判定分析来得出答案
但其实,我们只需要抓住两个点,持有和不持有,在这两种状态下分析问题会简单清晰许多
下面将会对各个问题进行分析讲解,来解释什么是持有和不持有状态,并在分析后得到题目的解答买卖股票的最佳时机
1、买卖股票的最佳时机
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
分析:
我们了解到这道题,只能够购买和卖出一次,那么,
持有的状态只有两种情况:1.之前就持有 2.今天刚买入
不持有也有两种情况:1.昨天就不持有 2.今天刚出售
1.dp空间
通过以上的分析我们可以知道,解决这个问题我们需要了解:
1.今天的价格 2.昨天的状态
所以,我们需要两对空间,保存两对持有与不持有状态
即一个2*2大小的数组
vector<vector<int>> dp(2, vector<int>(2));
2.初始状态
其中dp[i][0] 代表第i天的持有状态下的资金数
dp[i][1] 代表第i天的不持有状态下的资金数
由此我们也可以知道,第一天的持有状态只能是进行买入 即 -prices[0]
不持有状态只能是0
所以初始状态我们也有了
dp[0][0] = -prices[0];
dp[0][1] = 0;
3.递推公式
由刚开始的分析其实我们已经知道了递推公式,现在只需要进行代码实现即可:
先使用伪代码描述
当天持有股票的最大金额 = max(昨天就持有时的资金数,今天刚买入后所拥有的资金)
当天不持有股票的最大金额 = max(昨天就不持有时的资金数,今天刚卖出后所拥有的资金)
代码实现
其中的取模运算是为了获得之前的状态而不用进行数据移动
//因为只进行一次买入卖出,所以当前买入一定是 0 - prices[i]
dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
4.题解代码
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
vector<vector<int>> dp(2, vector<int>(2));
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++) {
dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
}
return dp[(len - 1) % 2][1];
}