区间 DP 常用模版

区间 DP 常用模版

所有的区间dp问题枚举时,第一维通常是枚举区间长度,并且一般 len = 1 时用来初始化,枚举从 len = 2 开始;第二维枚举起点 i (右端点 j 自动获得,j = i + len - 1)

模板代码如下:

for (int len = 1; len <= n; len++) { // 区间长度

for (int i = 1; i + len - 1 <= n; i++) { // 枚举起点

int j = i + len - 1; // 区间终点

if (len == 1) {

dp[i][j] = 初始值

continue;

}

for (int k = i; k < j; k++) { // 枚举分割点,构造状态转移方程

dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + w[i][j]);

}

}

}

在ACM竞赛中,算法模板的整理和熟练掌握是提高解题效率的重要手段。以下是一些常用算法模板分类及其简要说明: ### 单源最短路径算法 - **Dijkstra算法**:适用于所有边权值为正的情况。对于稠密图,其时间复杂度为 $O(n^2)$;而在稀疏图上,使用堆优化后的时间复杂度可以达到 $O(m\log n)$ [^1]。 - **SPFA (Shortest Path Faster Algorithm)**:能够处理带有负权边的问题,平均时间复杂度为 $O(km)$,其中 $k$ 是一个常数。然而,在网格图或非常稠密的图中不推荐使用此算法 [^1]。 ### 最小生成树算法 - **Prim算法**:适合于稠密图,基本实现的时间复杂度是 $O(n^2)$。通过优先队列优化后,可以在稀疏图上更高效运行。 - **Kruskal算法**:通常用于构建最小生成树,它利用并查集来避免环路,并按照边权重排序进行选择。 ### 动态规划 - 背包问题(0/1背包、完全背包等):解决资源分配问题的经典方法。 - 区间DP:针对特定区间划分的问题提供解决方案。 - 数位DP:处理数字中的某些特性统计问题。 ### 字符串匹配算法 - **KMP (Knuth-Morris-Pratt) 算法**:用于高效的字符串模式匹配。 - **Trie树**:也称为前缀树,用来存储一组字符串以便快速查找。 ### 图论其他常用算法 - **Tarjan算法**:用于寻找强连通分量、割点及桥等问题。 - **匈牙利算法**:主要用于二分图的最大匹配问题。 ### 数据结构相关模板 - 并查集:支持合并与查询操作的数据结构。 - 线段树:一种完全二叉树数据结构,可有效处理区间查询与更新操作。 - 树状数组(Fenwick Tree):轻量级数据结构,便于计算前缀和以及更新元素。 由于篇幅限制,这里仅提供了各类算法的一个概述。实际应用时需要根据具体问题编写相应的代码模板。例如,Dijkstra算法的一种简单实现可能如下所示: ```python import heapq def dijkstra(graph, start): distances = {vertex: float('infinity') for vertex in graph} previous_vertices = {vertex: None for vertex in graph} distances[start] = 0 priority_queue = [(0, start)] while priority_queue: current_distance, current_vertex = heapq.heappop(priority_queue) # Nodes can get added to the priority queue multiple times. We only process a vertex the first time we see it. if current_distance > distances[current_vertex]: continue for neighbor, weight in graph[current_vertex].items(): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance previous_vertices[neighbor] = current_vertex heapq.heappush(priority_queue, (distance, neighbor)) return distances, previous_vertices ``` 请注意,这段代码假设输入图是一个邻接表形式表示的字典,每个顶点都有一个包含与其相连顶点及其对应权重的字典。 以上列出了一些基础但重要的算法类别和示例。为了更好地准备ACM竞赛,建议深入学习这些算法的具体实现细节,并练习如何灵活运用它们解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值