上一篇文章讲了神经网络的基本原理和其tensorflow的实现,这次说一下其keras的实现方法,keras是构建在tensorflow基础上的python第三方库,专门用于神经网络的构建与计算,同时还集成了scikit-learn库,使得可以在神经网络的构建中运用机器学习的方法。现在就用keras来构建之前构建过的神经网络。
实现代码
首先导入所需要的包:
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets('MNIST_data/',one_hot=True)
其实keras中也包含了mnist数据集,但是使用keras导入需要从网上下载,但是那个网址被墙了,