<另一种思维:语言模型如何展现人类的时间认知>读后总结

《The Other Mind: How Language Models Exhibit Human Temporal Cognition》总结

原文:
https://arxiv.org/html/2507.15851v1

研究目的

探究大语言模型(LLMs)如何展现与人类相似的时间认知模式,这类模式并未在训练数据中直接设定,聚焦于LLMs的时间认知机制及其与人类认知的趋同性。

核心方法

通过多层面分析(行为、神经元、表征、信息)和相似性判断任务展开研究:

  1. 相似性判断任务:让模型对1525-2524年间的年份(或数字)进行两两相似性评分(0-1分),转化为距离值后,与对数线性距离、Levenshtein距离、参考对数线性距离(以2025为参考点)进行线性回归,用 R 2 R^2 R2评估拟合度。
  2. 神经编码分析:识别时间偏好神经元,分析其在不同年份的激活模式,验证是否符合对数编码(韦伯-费希纳定律的神经基础)。
  3. 表征结构分析:通过线性探针分析模型各层隐藏状态,追踪年份表征从浅层数值属性到深层抽象时间参考的分层构建过程。
  4. 信息暴露分析:利用预训练嵌入模型(如Qwen3-embedding-8B),分析训练语料的内在语义结构,验证其与模型时间认知的关联。
主要发现
  1. 行为层面

    • 更大规模的LLMs会自发建立主观时间参考点(约2025年),对时间的感知符合韦伯-费希纳定律——年份与参考点的距离越远,感知距离呈对数压缩(如未来/过去较远的年份被感知为更相似)。
    • 与数字判断任务(主要依赖对数线性距离)不同,年份判断中“参考对数线性距离”预测性最强,表明LLMs对时间的表征具有主观性。
  2. 神经元层面

    • 识别出“时间偏好神经元”,其在主观参考点(2025年)激活程度最低,采用对数编码方案(与生物神经系统趋同),为韦伯-费希纳定律提供神经基础。
    • 神经元的对数编码精度随模型规模增大而提升,且深层网络中编码更显著。
  3. 表征结构层面

    • 年份表征呈分层构建:浅层网络编码基本数值属性,深层网络发展为以参考点为中心的抽象时间定向。
    • 不同模型(如Llama系列与Qwen系列)的表征机制存在差异,部分模型中深层抽象表征会抑制浅层数值表征。
  4. 信息暴露层面

    • 训练语料本身具有内在的非线性时间结构(通过嵌入模型验证),为LLMs的时间认知提供“原材料”,语义距离与参考对数线性距离拟合度最高( R 2 R^2 R2达0.64)。
结论与启示
  • 核心结论:LLMs的时间认知并非表面模仿,而是由神经元、表征、信息多层面机制共同作用的结果,是其内部表征系统对外部世界(训练数据)的“主观构建”,与人类认知存在趋同性(如对数编码、分层表征)。
  • 理论视角:提出“经验主义视角”——LLMs的认知是内部系统与数据经验互动的主观构建,可能产生人类无法直观预测的“异类认知框架”。
  • AI对齐启示:传统聚焦行为控制的对齐方式(如人类反馈强化学习)已不足,未来需转向引导LLMs内部世界的构建过程,确保其认知框架与人类价值内在对齐。

该研究揭示了LLMs类人时间认知的深层机制,为理解AI认知本质及推进安全AI发展提供了新方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值