F - Count the Colors

Painting some colored segments on a line, some previously painted segments may be covered by some the subsequent ones.

Your task is counting the segments of different colors you can see at last.

 

Input



The first line of each data set contains exactly one integer n, 1 <= n <= 8000, equal to the number of colored segments.

 

Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:

x1 x2 c

x1 and x2 indicate the left endpoint and right endpoint of the segment, c indicates the color of the segment.

All the numbers are in the range [0, 8000], and they are all integers.

Input may contain several data set, process to the end of file.

 

Output



Each line of the output should contain a color index that can be seen from the top, following the count of the segments of this color, they should be printed according to the color index.

 

If some color can't be seen, you shouldn't print it.

Print a blank line after every dataset.

 

Sample Input



5
0 4 4
0 3 1
3 4 2
0 2 2
0 2 3
4
0 1 1
3 4 1
1 3 2
1 3 1
6
0 1 0
1 2 1
2 3 1
1 2 0
2 3 0
1 2 1

 

 

Sample Output



1 1
2 1
3 1

 

1 1

0 2
1 1

#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<vector>
#include<queue>
#include<stack>
#include<iomanip>
#include<string>
#include<climits>
#include<cmath>
#define INF 0x3f3f3f3f
#define MAXN 8010
#define LL long long
using namespace std;
struct node{
    int l,r;
	int color;
};
node segTree[4*MAXN];

void build(int num,int l,int r)
{
	segTree[num].l=l;
	segTree[num].r=r;
	segTree[num].color=-1;
	//确定num的l和r以及color
	if(l==r)
		return;
	int mid=(l+r)>>1;
	build(num<<1,l,mid);
	build(num<<1|1,mid+1,r);
}

void pushdown(int num)
{
	segTree[num<<1].color=segTree[num<<1|1].color=segTree[num].color;
	segTree[num].color=-1;
}
void update(int num,int l,int r,int c)
{
	if(segTree[num].l>=l&&segTree[num].r<=r)
    {
    	segTree[num].color=c;
    	return;
    }
    if(segTree[num].l>r||segTree[num].r<l) return;
    if(segTree[num].color!=-1) pushdown(num);
    update(num<<1,l,r,c);
    update(num<<1|1,l,r,c);
}

int mark[MAXN],cnt;

void query(int l,int r,int x)
{
    if((l==segTree[x].l&&segTree[x].r==r&&segTree[x].color!=-1)||segTree[x].l==segTree[x].r)
    {
        mark[cnt++]=segTree[x].color;
        return;
    }
    LL tmp=x<<1;
    LL mid=(segTree[x].l+segTree[x].r)>>1;
    if(r<=mid)   return query(l,r,tmp);
    else if(l>mid)  return query(l,r,tmp+1);
    else
    {
        query(l,mid,tmp);
        query(mid+1,r,tmp+1);
    }
}

int main()
{
	int n;
	while(~scanf("%d",&n))
    {
        memset(mark,-1,sizeof(mark));
        int mmax=0;
        int x1[MAXN<<2],x2[MAXN<<2],c[MAXN<<2],sum[MAXN<<2];
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d%d",&x1[i],&x2[i],&c[i]);
            if(mmax<x2[i]) mmax=x2[i];
        }
        build(1,1,mmax);
        for(int i=1;i<=n;i++)
            update(1,x1[i]+1,x2[i],c[i]);
        query(1,mmax,1);
        for(int i=0;i<cnt;)
        {
            if(mark[i]==-1) {i++;continue;}
            else
            {
                int x=mark[i];
                while(mark[++i]==x&&i<cnt);
                sum[x]++;
            }
        }
        for(int i=0;i<8010;i++)
            if(sum[i])
         printf("%d %d\n",i,sum[i]);
        printf("\n");
    }
    return 0;
}

 

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license """ Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc. Usage - sources: $ python detect.py --weights yolov5s.pt --source 0 # webcam img.jpg # image vid.mp4 # video screen # screenshot path/ # directory list.txt # list of images list.streams # list of streams 'path/*.jpg' # glob 'https://youtu.be/LNwODJXcvt4' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream Usage - formats: $ python detect.py --weights yolov5s.pt # PyTorch yolov5s.torchscript # TorchScript yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s_openvino_model # OpenVINO yolov5s.engine # TensorRT yolov5s.mlpackage # CoreML (macOS-only) yolov5s_saved_model # TensorFlow SavedModel yolov5s.pb # TensorFlow GraphDef yolov5s.tflite # TensorFlow Lite yolov5s_edgetpu.tflite # TensorFlow Edge TPU yolov5s_paddle_model # PaddlePaddle """ import argparse import csv import os import platform import sys from pathlib import Path import torch FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from ultralytics.utils.plotting import Annotator, colors, save_one_box from models.common import DetectMultiBackend from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams from utils.general import ( LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh, ) from utils.torch_utils import select_device, smart_inference_mode # 新增:计算IOU函数 def calculate_iou(box1, box2): """计算两个边界框的IOU""" x1, y1, x2, y2 = box1 x1g, y1g, x2g, y2g = box2 # 计算交集区域 xA = max(x1, x1g) yA = max(y1, y1g) xB = min(x2, x2g) yB = min(y2, y2g) # 计算交集面积 inter_area = max(0, xB - xA + 1) * max(0, yB - yA + 1) # 计算并集面积 box1_area = (x2 - x1 + 1) * (y2 - y1 + 1) box2_area = (x2g - x1g + 1) * (y2g - y1g + 1) union_area = float(box1_area + box2_area - inter_area) # 计算IOU iou = inter_area / union_area return iou # 新增:计算准确率函数 def calculate_accuracy(gt_labels, pred_detections, iou_threshold=0.5): """计算目标检测的准确率""" correct_predictions = 0 total_gt_objects = 0 total_pred_objects = 0 for img_name in gt_labels: if img_name not in pred_detections: continue gt_boxes = gt_labels[img_name] pred_boxes = pred_detections[img_name] total_gt_objects += len(gt_boxes) total_pred_objects += len(pred_boxes) # 标记已匹配的真实标签 gt_matched = [False] * len(gt_boxes) for pred_box in pred_boxes: pred_class, pred_bbox, pred_conf = pred_box best_iou = 0 best_gt_idx = -1 # 寻找最佳匹配的真实标签 for i, gt_box in enumerate(gt_boxes): gt_class, gt_bbox = gt_box if gt_matched[i]: continue iou = calculate_iou(pred_bbox, gt_bbox) if iou > best_iou and pred_class == gt_class: best_iou = iou best_gt_idx = i # 如果IOU超过阈值且类别正确,则计为正确预测 if best_gt_idx != -1 and best_iou >= iou_threshold: correct_predictions += 1 gt_matched[best_gt_idx] = True # 避免除零错误 if total_gt_objects == 0: return 0.0 # 计算准确率 return correct_predictions / total_gt_objects @smart_inference_mode() def run( weights=ROOT / "yolov5s.pt", # model path or triton URL source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam) data=ROOT / "data/coco128.yaml", # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_format=0, # save boxes coordinates in YOLO format or Pascal-VOC format (0 for YOLO and 1 for Pascal-VOC) save_csv=False, # save results in CSV format save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / "runs/detect", # save results to project/name name="exp", # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference vid_stride=1, # video frame-rate stride gt_dir="", # 新增:真实标签目录 eval_interval=10, # 新增:评估间隔帧数 ): """ Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc. Args: weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'. source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam index. Default is 'data/images'. data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'. imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640). conf_thres (float): Confidence threshold for detections. Default is 0.25. iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45. max_det (int): Maximum number of detections per image. Default is 1000. device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the best available device. view_img (bool): If True, display inference results using OpenCV. Default is False. save_txt (bool): If True, save results in a text file. Default is False. save_format (int): Whether to save boxes coordinates in YOLO format or Pascal-VOC format. Default is 0. save_csv (bool): If True, save results in a CSV file. Default is False. save_conf (bool): If True, include confidence scores in the saved results. Default is False. save_crop (bool): If True, save cropped prediction boxes. Default is False. nosave (bool): If True, do not save inference images or videos. Default is False. classes (list[int]): List of classes to filter detections by. Default is None. agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False. augment (bool): If True, use augmented inference. Default is False. visualize (bool): If True, visualize feature maps. Default is False. update (bool): If True, update all models' weights. Default is False. project (str | Path): Directory to save results. Default is 'runs/detect'. name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'. exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is False. line_thickness (int): Thickness of bounding box lines in pixels. Default is 3. hide_labels (bool): If True, do not display labels on bounding boxes. Default is False. hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False. half (bool): If True, use FP16 half-precision inference. Default is False. dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False. vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1. gt_dir (str): 新增:真实标签目录路径 eval_interval (int): 新增:每隔多少帧计算一次准确率 Returns: None """ source = str(source) save_img = not nosave and not source.endswith(".txt") # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://")) webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) screenshot = source.lower().startswith("screen") if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader bs = 1 # batch_size if webcam: view_img = check_imshow(warn=True) dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) bs = len(dataset) elif screenshot: dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) vid_path, vid_writer = [None] * bs, [None] * bs # 新增:加载真实标签数据 gt_labels = {} if gt_dir: gt_dir = Path(gt_dir) for txt_file in gt_dir.glob("*.txt"): img_name = txt_file.stem gt_labels[img_name] = [] with open(txt_file, "r") as f: for line in f: parts = line.strip().split() if len(parts) >= 5: cls = int(parts[0]) # 将YOLO格式转换为xyxy格式 x, y, w, h = map(float, parts[1:5]) # 假设真实标签对应的图像尺寸与输入图像一致 x1 = (x - w/2) * imgsz[1] y1 = (y - h/2) * imgsz[0] x2 = (x + w/2) * imgsz[1] y2 = (y + h/2) * imgsz[0] gt_labels[img_name].append((cls, (x1, y1, x2, y2))) # 新增:收集预测结果 pred_detections = {} frame_count = 0 accuracy = 0.0 # 初始化准确率 # Run inference model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device)) for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim if model.xml and im.shape[0] > 1: ims = torch.chunk(im, im.shape[0], 0) # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False if model.xml and im.shape[0] > 1: pred = None for image in ims: if pred is None: pred = model(image, augment=augment, visualize=visualize).unsqueeze(0) else: pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0) pred = [pred, None] else: pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Define the path for the CSV file csv_path = save_dir / "predictions.csv" # Create or append to the CSV file def write_to_csv(image_name, prediction, confidence): """Writes prediction data for an image to a CSV file, appending if the file exists.""" data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence} file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a", newline="") as f: writer = csv.DictWriter(f, fieldnames=data.keys()) if not file_exists: writer.writeheader() writer.writerow(data) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f"{i}: " else: p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt s += "{:g}x{:g} ".format(*im.shape[2:]) # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): c = int(cls) # integer class label = names[c] if hide_conf else f"{names[c]}" confidence = float(conf) confidence_str = f"{confidence:.2f}" if save_csv: write_to_csv(p.name, label, confidence_str) if save_txt: # Write to file if save_format == 0: coords = ( (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() ) # normalized xywh else: coords = (torch.tensor(xyxy).view(1, 4) / gn).view(-1).tolist() # xyxy line = (cls, *coords, conf) if save_conf else (cls, *coords) # label format with open(f"{txt_path}.txt", "a") as f: f.write(("%g " * len(line)).rstrip() % line + "\n") if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}") annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True) # 新增:收集预测结果 img_name = p.stem pred_detections[img_name] = [] if len(det): for *xyxy, conf, cls in det: c = int(cls) x1, y1, x2, y2 = map(int, xyxy) pred_detections[img_name].append((c, (x1, y1, x2, y2), float(conf))) # 新增:定期计算准确率并显示 frame_count += 1 if gt_dir and frame_count % eval_interval == 0: accuracy = calculate_accuracy(gt_labels, pred_detections) if save_img or view_img: accuracy_text = f"Accuracy: {accuracy:.2f}" annotator.text((10, 30), accuracy_text, txt_color=(255, 255, 255)) im0 = annotator.result() # Stream results im0 = annotator.result() if view_img: if platform.system() == "Linux" and p not in windows: windows.append(p) cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == "image": cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) vid_writer[i].write(im0) # Print time (inference-only) LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1e3:.1f}ms") # 新增:在终端输出最终准确率 if gt_dir: accuracy = calculate_accuracy(gt_labels, pred_detections) LOGGER.info(f"Overall Accuracy: {accuracy:.4f}") # Print results t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) def parse_opt(): """ Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations. Args: --weights (str | list[str], optional): Model path or triton URL. Defaults to ROOT / 'yolov5s.pt'. --source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'. --data (str, optional): Dataset YAML path. Provides dataset configuration information. --imgsz (list[int], optional): Inference size (height, width). Defaults to [640]. --conf-thres (float, optional): Confidence threshold. Defaults to 0.25. --iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45. --max-det (int, optional): Maximum number of detections per image. Defaults to 1000. --device (str, optional): CUDA device, i.e. 0 or 0,1,2,3 or cpu. Defaults to "". --view-img (bool, optional): Flag to display results. Default is False. --save-txt (bool, optional): Flag to save results to *.txt files. Default is False. --save-format (int, optional): Whether to save boxes coordinates in YOLO format or Pascal-VOC format. Default is 0. --save-csv (bool, optional): Flag to save results in CSV format. Default is False. --save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Default is False. --save-crop (bool, optional): Flag to save cropped prediction boxes. Default is False. --nosave (bool, optional): Flag to prevent saving images/videos. Default is False. --classes (list[int], optional): List of classes to filter results by. Default is None. --agnostic-nms (bool, optional): Flag for class-agnostic NMS. Default is False. --augment (bool, optional): Flag for augmented inference. Default is False. --visualize (bool, optional): Flag for visualizing features. Default is False. --update (bool, optional): Flag to update all models in the model directory. Default is False. --project (str, optional): Directory to save results. Default is ROOT / 'runs/detect'. --name (str, optional): Sub-directory name for saving results within --project. Default is 'exp'. --exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Default is False. --line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Default is 3. --hide-labels (bool, optional): Flag to hide labels in the output. Default is False. --hide-conf (bool, optional): Flag to hide confidences in the output. Default is False. --half (bool, optional): Flag to use FP16 half-precision inference. Default is False. --dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Default is False. --vid-stride (int, optional): Video frame-rate stride. Default is 1. --gt-dir (str, optional): 新增:真实标签目录路径 --eval-interval (int, optional): 新增:每隔多少帧计算一次准确率 Returns: argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object. """ parser = argparse.ArgumentParser() parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL") parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)") parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path") parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w") parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold") parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold") parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image") parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") parser.add_argument("--view-img", action="store_true", help="show results") parser.add_argument("--save-txt", action="store_true", help="save results to *.txt") parser.add_argument( "--save-format", type=int, default=0, help="whether to save boxes coordinates in YOLO format or Pascal-VOC format when save-txt is True, 0 for YOLO and 1 for Pascal-VOC", ) parser.add_argument("--save-csv", action="store_true", help="save results in CSV format") parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels") parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes") parser.add_argument("--nosave", action="store_true", help="do not save images/videos") parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3") parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS") parser.add_argument("--augment", action="store_true", help="augmented inference") parser.add_argument("--visualize", action="store_true", help="visualize features") parser.add_argument("--update", action="store_true", help="update all models") parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name") parser.add_argument("--name", default="exp", help="save results to project/name") parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)") parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels") parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences") parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference") parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride") # 新增参数 parser.add_argument("--gt-dir", type=str, default="", help="ground truth labels directory") parser.add_argument("--eval-interval", type=int, default=10, help="evaluate accuracy every N frames") opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(vars(opt)) return opt def main(opt): """ Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running. Args: opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. Returns: None """ check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop")) run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)代码如上。yolov5在detect.py得到有类别和置信度标注的视频和图片,请问我如何操作,才能在有类别和置信度标注的视频和图片的基础上,在视频或图片中显示识别准确率Accuracy。请给出修改后的完整代码(尽量少修改,不要改变代码的其他地方),要求直接在vscode点击运行即可生成显示识别准确率Accuracy的视频或图片
最新发布
07-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值