从零开始完成YOLOv5目标识别(三)用PyQt5展示YOLOv5的识别结果

本文介绍了如何使用PyQt5来显示YOLOv5的识别结果。主要内容包括QtDesign的设计,如水平布局的设置,以及在main.py中实现检测功能,导入YOLOv5的相关模块,并调用detect方法进行图像检测。此外,还提到plots.py文件在YOLOv5版本更新中的变化及其重要方法。

往期内容

从零开始完成Yolov5目标识别(二)制作并训练自己的训练集

从零开始完成Yolov5目标识别(一)准备工作

目录

往期内容

一、项目框架:

二、核心内容:

1. QtDesign设计:

2. 检测部分

2.1 导包

2.2 main.py要实现的主要功能

三、效果


一、项目框架:

其中main.py和MainWindow.py是pyqt5的功能文件。

二、核心内容:

pyqt5的安装过程略过;

1. QtDesign设计:

用来显示视频、图像和摄像头内容的label、textBrowser和按钮控件采用水平布局;

窗口空白处单击右击-》布局-》水平布局,可以使控件自适应页面大小。<

### 寻找适用于YOLOv5进行车牌字符识别的数据集 对于使用YOLOv5进行车牌字符识别的任务,数据集的选择至关重要。当前存在多个公开可用的数据集可以用于此目的。 #### CCPD车牌数据集 CCPD(Chinese City Parking Dataset)是一个广泛使用的车牌检测数据集,包含了大约30万张图片,涵盖了蓝色和绿色车牌。该数据集不仅提供了丰富的样本量,而且具有多样化的场景设置,有助于提升模型的鲁棒性和泛化能力[^4]。 下载链接可参见相关博客文章中的描述[^4]。 #### 自定义数据集创建 如果现有的公共数据集无法满足特定需求,则可以根据实际应用场景自行采集并标注数据来构建自定义数据集。这通常涉及以下几个方面的工作: - **数据收集**:通过摄像头或其他设备拍摄含有不同类型的车牌的照片。 - **标签制作**:为每一张图片标记出车牌的具体位置以及对应的字符信息。这一过程可能需要用到专门的工具如LabelImg等辅助完成。 为了确保模型能有效地学习到车牌字符特征的同时保持良好的泛化性能,在准备数据的过程中还需要注意对图像做一些必要的预处理操作,比如裁剪、缩放、旋转等变换以增加数据多样性[^5]。 ```bash # 使用wget命令从网络上获取CCPD数据集压缩包 $ wget https://github.com/detectRecog/CCPD/archive/master.zip # 解压文件至指定目录 $ unzip master.zip -d ./data/ ```
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明天才有空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值