使用PyTorch进行图像分类

69 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用PyTorch构建图像分类模型。首先下载并划分CIFAR-10数据集,然后定义一个CNN模型,包括卷积、池化和全连接层。接着设置交叉熵损失函数和随机梯度下降优化器,训练模型20个epoch,并在训练过程中监控损失函数。最后,使用测试集评估模型的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用PyTorch进行图像分类

在机器学习领域中,图像分类是一个十分重要的任务。在本文中,我们将介绍如何使用PyTorch框架构建一个图像分类模型。

首先,让我们看一下准备工作。我们需要下载图像数据集,并将其分为训练集和测试集。在这里,我们将使用CIFAR-10数据集,其中包含60000张32x32像素的彩色图像,共分为10个类别。

接下来,我们将用PyTorch定义一个神经网络模型。在这里,我们将使用卷积神经网络(Convolutional Neural Network, CNN)来处理图像。卷积层可以提取图像的特征,池化层则可以降低图像的维度,全连接层则可以将特征转换为类别预测。

下面是CNN模型的代码实现:

import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值