挑战程序设计竞赛: Fliptile

本文探讨了一种矩阵翻转问题的高效求解策略,通过枚举首行翻转状态,利用位运算技巧,将复杂度从O(2^(MN))降低至O(MN*2^N),并附带详细代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意

在这里插入图片描述

解题思路

先说普通的爆搜,对于每个格子,要么翻转要么不翻转,因此复杂度为 O ( 2 M N ) O(2^{MN}) O(2MN).
转换思路:

  • (1): 首先对第一排的所有翻转情况进行枚举:共 O ( 2 N ) O(2^N) O(2N)
  • (2): 在枚举的每一种情况下,下一排的格子的翻转情况被上一排的格子颜色唯一确定。比如当前扫描到位置 ( i , j ) (i,j) (i,j),其翻转情况由位置 ( i − 1 , j ) (i-1, j) (i1,j)的小格颜色唯一确定。
  • (3): 最后只需要判断最后一排是否全满足情况,满足即可解,不满足即不可解。
  • (4): 复杂度 O ( M N 2 N ) O(MN2^N) O(MN2N)

技巧:

  • 采用位运算对第一排每一种情况进行模拟。

代码

#include<iostream>
#include<cstring>
using namespace std;

const int MAX = 17;
int M, N;
int base[MAX][MAX];
int flip[MAX][MAX];
int ans_flip[MAX][MAX];
int dir[4][2] = {{-1,0},{0,1},{0,0},{0,-1}};

int is_black(int x, int y)
{
    int flip_num = 0;
    for(int i=0; i<4; i++)
    {
        int nx = x+dir[i][0];
        int ny = y+dir[i][1];
        if(nx < 0 || nx >= M || ny < 0 || ny >= N)
            continue;
        flip_num += flip[x+dir[i][0]][y+dir[i][1]];
    }
    if((flip_num+base[x][y])%2)
        return 1;
    return 0;
}
int main()
{
    cin >> M >> N;
    for(int i=0; i<M; i++)
        for(int j=0; j<N; j++)
            cin >> base[i][j];
    int ans = MAX*MAX;
    for(int i=0; i<(1<<N); i++)
    {
        memset(flip, 0, sizeof(flip));
        int state = i;
        for(int j=N-1; j>=0; j--)
        {
            flip[0][j] = state&1;
            state>>=1;
        }
        for(int m=1; m<M; m++)
            for(int n=0; n<N; n++)
                if(is_black(m-1, n))
                    flip[m][n] = 1;



        int flag = 1;
        for(int n=0; n<N; n++)
        {
            if(is_black(M-1, n))
            {
                flag = 0;
                break;
            }
        }
        if(flag)
        {
            int num = 0;
            for(int i=0; i<M; i++)
                for(int j=0; j<N; j++)
                    num += flip[i][j];
            if(num < ans)
            {
                for(int i=0; i<M; i++)
                    for(int j=0; j<N; j++)
                        ans_flip[i][j] = flip[i][j];
                ans = num;
            }
        }

    }
    if(ans == MAX * MAX)
        cout << "IMPOSSIBLE" << endl;
    else
    {
        for(int i=0; i<M; i++)
        {
            for(int j=0; j<N; j++)
            {
                if(j)
                    cout << " " << ans_flip[i][j];
                else
                    cout << ans_flip[i][j];
            }
            cout << endl;
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值