【机器学习】1.基本概念:监督学习 非监督学习 半监督学习

本文介绍了机器学习的基本概念,包括特征与标签的定义,以及监督学习、非监督学习和半监督学习的区别。监督学习涉及回归与分类问题,通过有标签的训练数据学习预测模型;非监督学习则是在无标签数据中寻找结构和分布;半监督学习结合有标签和无标签数据来提高预测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【机器学习】1.基本概念:监督学习 非监督学习 半监督学习

机器学习基本概念

特征与标签

标签是我么要预测的事物,即线性回归中的y变量。标签可以是小麦未来的价格,图片中人脸的性别,音频的含义等一切要预测的事物。

特征是是输入变量,即线性回归中的 x 变量。特征是预测事物的证据,而标签就是预测的结果。
以周志华老师在《机器学习》中判断好瓜的问题为例——给你一个西瓜,如何判断出一个它是不是成熟的好瓜?根据以前的经验,我们首先会从西瓜这个具体的事物中抽取一些有用的信息,比如西瓜的颜色、瓜蒂的形状、敲击的声音等,然后根据一定的规则在这些信息的基础上进行判断————一般情况下我们认为颜色青绿、根蒂蜷缩、敲击浊响的西瓜是好瓜。
上述问题中,西瓜的颜色、瓜蒂的形状、敲击的声音就是特征,而“好瓜”和“坏瓜”这两个判断就是标签。
机器学习可以分为三类:监督学习、非监督学习、半监督学习也叫强化学习。

监督学习

监督式的机器学习是指你拥有一个输入变量(x)和一个输出变量(Y),使用算法去学习从输入到输出的映射函数:Y=f(x)
我们的目标是得到足够接近映射函数的函数,当我们有新的的输入变量(x)时,能够准确的预测出它对应的输出变量Y。
这种方式被称为监督学习,算法在学习训练数据集从输入变量到输出变量的过程好像有一位老师在监督学习的过程。对于训练数据集,我们已经知道了它的输出Y,算法不断迭代对训练数据做出预测然后不断被一名教师修正。算法表现会越来越好,预测结果越来越准确,当算法准确性达到一个可接受的程度时学习过程停止。

回归与分类

监督式的机器学习进一步分为两类:回归问题和分类问题。
回归问题:回归问题指输出变量Y是连续值,比如要预测图片中人脸的年龄,小麦未来的价格。
分类问题:分类问题指输出变量Y是<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值