算法:插入排序

插入排序(Insertion Sort)是一种简单而高效的排序算法,特别适用于小规模数据或部分已排序的数据。它的基本原理是通过维护一个已排序的部分,并将新元素插入到合适的位置,从而逐步形成完整的排序

一、插入排序的基本步骤

1. 从第二个元素开始,假设第一个元素已被排序。
2. 将当前元素与已排序部分中的元素进行比较,直到找到合适的位置。
3. 将当前元素插入到发现的位置,并移动其他元素以腾出空间。
4. 重复上述步骤,直至所有元素都被插入到正确的位置。

二、插入排序的特点

1. 时间复杂度

        最坏情况:O(n²)(当数组逆序时,需要进行 n*(n-1)/2 次比较和交换)
        平均情况:O(n²)
        最好情况:O(n)(当数组已是有序时)

2. 空间复杂度

        O(1)(原地排序,不需要额外存储空间)。

3. 稳定性

        插入排序是稳定的,重复元素的相对顺序保持不变。

三、插入排序的实现

以下是 Python 中插入排序的实现示例:

def inner_sort(alist):
    # 列表长度
    n = len(alist)
    # 从第二元素开始遍历,进行数据插入:控制轮数
    for i in range(1, n):
        # 将当前元素与已经排序部分的元素进行逐一比较,通过交换找到合适的位置
        # range(i, 0, -1):i i-1 i-2 i-3,……
        for j in range(i, 0, -1):
            # 如果当前元素小于已经排序部分的元素,则交换
            if alist[j] < alist[j - 1]:
                alist[j], alist[j - 1] = alist[j - 1], alist[j]

    return alist


if __name__ == '__main__':
    alist = [2, 1, 4, 3, 6, 5, 9, 8, 7]
    alist = inner_sort(alist)
    print('排序后数据:', alist)

优缺点

优点:
        简单易懂:算法逻辑清晰,易于实现,适合初学者。
        适用于部分有序的数据:如果数据基本有序,插入排序效率较高,接近 O(n) 的性能。
        稳定性:保持相同元素的原有顺序。

缺点:
        效率低下:对于大规模数据,时间复杂度 O(n²) 耗时较多,不适合大规模数据的排序。
        比较和移动次数较多:最坏情况下,移动次数和比较次数都可能很高。

四、应用场景

插入排序适合用于以下场景:
        数据量小的排序问题。
        对于部分已排序的列表进行扩展或进一步排序的情况。
        内部排序中常用于处理小数组,在典型的混合排序算法中(如 Timsort)作为基本排序算法。

四、总结

        插入排序是一种简单且有效的排序算法,尤其适合小规模信息的排序问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

00&00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值