插入排序(Insertion Sort)是一种简单而高效的排序算法,特别适用于小规模数据或部分已排序的数据。它的基本原理是通过维护一个已排序的部分,并将新元素插入到合适的位置,从而逐步形成完整的排序。
一、插入排序的基本步骤
1. 从第二个元素开始,假设第一个元素已被排序。
2. 将当前元素与已排序部分中的元素进行比较,直到找到合适的位置。
3. 将当前元素插入到发现的位置,并移动其他元素以腾出空间。
4. 重复上述步骤,直至所有元素都被插入到正确的位置。
二、插入排序的特点
1. 时间复杂度
最坏情况:O(n²)(当数组逆序时,需要进行 n*(n-1)/2 次比较和交换)
平均情况:O(n²)
最好情况:O(n)(当数组已是有序时)
2. 空间复杂度
O(1)(原地排序,不需要额外存储空间)。
3. 稳定性
插入排序是稳定的,重复元素的相对顺序保持不变。
三、插入排序的实现
以下是 Python 中插入排序的实现示例:
def inner_sort(alist):
# 列表长度
n = len(alist)
# 从第二元素开始遍历,进行数据插入:控制轮数
for i in range(1, n):
# 将当前元素与已经排序部分的元素进行逐一比较,通过交换找到合适的位置
# range(i, 0, -1):i i-1 i-2 i-3,……
for j in range(i, 0, -1):
# 如果当前元素小于已经排序部分的元素,则交换
if alist[j] < alist[j - 1]:
alist[j], alist[j - 1] = alist[j - 1], alist[j]
return alist
if __name__ == '__main__':
alist = [2, 1, 4, 3, 6, 5, 9, 8, 7]
alist = inner_sort(alist)
print('排序后数据:', alist)
优缺点
优点:
简单易懂:算法逻辑清晰,易于实现,适合初学者。
适用于部分有序的数据:如果数据基本有序,插入排序效率较高,接近 O(n) 的性能。
稳定性:保持相同元素的原有顺序。
缺点:
效率低下:对于大规模数据,时间复杂度 O(n²) 耗时较多,不适合大规模数据的排序。
比较和移动次数较多:最坏情况下,移动次数和比较次数都可能很高。
四、应用场景
插入排序适合用于以下场景:
数据量小的排序问题。
对于部分已排序的列表进行扩展或进一步排序的情况。
内部排序中常用于处理小数组,在典型的混合排序算法中(如 Timsort)作为基本排序算法。
四、总结
插入排序是一种简单且有效的排序算法,尤其适合小规模信息的排序问题。