一、DeepSeek 背景简介
-
DeepSeek 是一家中国 AI 创企,成立于 2023 年,发布了一系列开源的、大规模且低成本的语言模型(techtarget.com, theguardian.com)。
-
自 2023 年底发布首个基础版本以来,DeepSeek 快速迭代,已成为全球开源 LLM(大语言模型)中的领军者。
二、DeepSeek 各版本模型进化
1. DeepSeek‑LLM & DeepSeek‑Coder(2023)
-
参数规模:7B 或 67B
-
架构:标准 decoder‑only Transformer,具备多语言与编程能力
-
上下文窗口:4K tokens,适合一般通用任务和代码生成任务(維基百科)。
2. DeepSeek‑V2(2024 年 5 月)
-
参数总量:236B,启用专家子模型(MoE)时仅激活 21B
-
特性:支持高达 128K tokens 上下文窗口;采用 Multi‑head Latent Attention (MLA) 和 DeepSeekMoE 架构,显著降低训练与推理成本(arxiv.org)。
3. DeepSeek‑V3(2024 年 12 月)
-
参数规模:671B,总共享大模型;每 token 激活约 37B 参数
-
新特性:MLA、Mixture-of-Experts 架构、FP8 混合精度、Multi‑Token Prediction(MTP)训练方式
-
上下文能力升级至 128K tokens,极大适配长文理解任务(arxiv.org)。
4. DeepSeek‑R1 系列(2025 年 1 月)
-
基于 V3 架构,专注推理与“链式思维”生成任务
-
强调纯 强化学习训练流程,包括 R1-Zero(无监督 RL 起点)和后续强化后的 R1 模型
-
在数学推理、代码生成、问答等领域,性能媲美 OpenAI 的 state-of-the-art o1 模型(arxiv.org, theguardian.com)。
三、创新技术亮点
1. Mixture-of-Experts(MoE)架构
-
极大参数量但 sparsed 激活:节省计算资源与成本
-
在 V3/V2 中,模型可以仅活跃部分专家实现高效推理(Reddit)。
2. Multi-Head Latent Attention(MLA)
-
用隐变量压缩 KV 缓存,通过 latent attention 保存大上下文能力
-
降低模型推理复杂度同时保留性能(arxiv.org)。
3. Multi-Token Prediction(MTP)任务设计
-
可同时预测多个连续 token,提高生成效率
-
支持 speculative decoding,加速推理响应(Reddit)。
4. 极长上下文支持(上下文窗口 128K tokens)
-
适合法律文档、长篇论文、对话历史等长文场景
-
在长文本任务中表现远超常见 4K-8K 模型。
5. 低成本高效训练
-
DeepSeek‑V3 的完整训练耗时仅约 2.788M GPU 小时,成本远低于同规模其他模型(arxiv.org)。
四、优点总结
优点 | 内容说明 |
---|---|
性能领先 | MMLU、数学、代码等 benchmark 上超越多数开源与闭源模型 |
高度可扩展 | MoE 架构仅激活部分专家,降低推理成本 |
长文本处理能力强 | 支持高达 128K tokens 文本输入 |
开源与透明度高 | 模型和论文开放供社区使用与研究 |
训练与运行成本低 | 架构优化显著降低训练与部署资源投入 |
五、总结归纳
DeepSeek 系列作为指标性开源大语言模型,其融合 MoE 架构、MLA、MTP 与超长上下文支持等多个创新技术,为长文本与复杂推理场景提供高效解决方案。它的低成本训练模式与开放策略,对 AI 社区特别是研究与创新者而言具有重大意义。