DeepSeek

一、DeepSeek 背景简介 

  • DeepSeek 是一家中国 AI 创企,成立于 2023 年,发布了一系列开源的、大规模且低成本的语言模型(techtarget.com, theguardian.com)。

  • 自 2023 年底发布首个基础版本以来,DeepSeek 快速迭代,已成为全球开源 LLM(大语言模型)中的领军者。

二、DeepSeek 各版本模型进化

1. DeepSeek‑LLM & DeepSeek‑Coder(2023)

  • 参数规模:7B 或 67B

  • 架构:标准 decoder‑only Transformer,具备多语言与编程能力

  • 上下文窗口:4K tokens,适合一般通用任务和代码生成任务(維基百科)。

2. DeepSeek‑V2(2024 年 5 月)

  • 参数总量:236B,启用专家子模型(MoE)时仅激活 21B

  • 特性:支持高达 128K tokens 上下文窗口;采用 Multi‑head Latent Attention (MLA)DeepSeekMoE 架构,显著降低训练与推理成本(arxiv.org)。

3. DeepSeek‑V3(2024 年 12 月)

  • 参数规模:671B,总共享大模型;每 token 激活约 37B 参数

  • 新特性:MLA、Mixture-of-Experts 架构、FP8 混合精度、Multi‑Token Prediction(MTP)训练方式

  • 上下文能力升级至 128K tokens,极大适配长文理解任务(arxiv.org)。

4. DeepSeek‑R1 系列(2025 年 1 月)

  • 基于 V3 架构,专注推理与“链式思维”生成任务

  • 强调纯 强化学习训练流程,包括 R1-Zero(无监督 RL 起点)和后续强化后的 R1 模型

  • 在数学推理、代码生成、问答等领域,性能媲美 OpenAI 的 state-of-the-art o1 模型(arxiv.org, theguardian.com)。

三、创新技术亮点

1. Mixture-of-Experts(MoE)架构

  • 极大参数量但 sparsed 激活:节省计算资源与成本

  • 在 V3/V2 中,模型可以仅活跃部分专家实现高效推理(Reddit)。

2. Multi-Head Latent Attention(MLA)

  • 用隐变量压缩 KV 缓存,通过 latent attention 保存大上下文能力

  • 降低模型推理复杂度同时保留性能(arxiv.org)。

3. Multi-Token Prediction(MTP)任务设计

  • 可同时预测多个连续 token,提高生成效率

  • 支持 speculative decoding,加速推理响应(Reddit)。

4. 极长上下文支持(上下文窗口 128K tokens)

  • 适合法律文档、长篇论文、对话历史等长文场景

  • 在长文本任务中表现远超常见 4K-8K 模型。

5. 低成本高效训练

  • DeepSeek‑V3 的完整训练耗时仅约 2.788M GPU 小时,成本远低于同规模其他模型(arxiv.org)。

四、优点总结

优点内容说明
性能领先MMLU、数学、代码等 benchmark 上超越多数开源与闭源模型
高度可扩展MoE 架构仅激活部分专家,降低推理成本
长文本处理能力强支持高达 128K tokens 文本输入
开源与透明度高模型和论文开放供社区使用与研究
训练与运行成本低架构优化显著降低训练与部署资源投入

五、总结归纳

DeepSeek 系列作为指标性开源大语言模型,其融合 MoE 架构、MLA、MTP 与超长上下文支持等多个创新技术,为长文本与复杂推理场景提供高效解决方案。它的低成本训练模式与开放策略,对 AI 社区特别是研究与创新者而言具有重大意义。

### 关于 DeepSeek 大语言模型及其应用 DeepSeek 是一家专注于通用人工智能(AGI)的中国科技公司,致力于大语言模型的研发与应用。其核心目标是从零到一实现科研突破,并从一到百推动技术的实际落地[^1]。 #### 什么是 DeepSeekDeepSeek 提供了一系列强大的大型语言模型(LLM),这些模型具备广泛的自然语言理解和生成能力。它们不仅可以用于文本生成、对话交互,还能支持复杂任务的解决。例如,在 LM Studio 中运行 DeepSeek 模型时,用户可以通过简单的操作加载并测试不同版本大模型[^2]。 #### 实战部署流程 为了在本地环境中运行 DeepSeek 模型,用户需先访问 LM Studio 平台。进入主界面后,通过顶部菜单栏选择 **“Models”**,随后在搜索框中输入关键词 **“DeepSeek”** 来筛选可用模型。对于初学者而言,建议选用轻量级版本如 **“DeepSeek-R1-Lite-7B”**,该选项兼顾性能与资源消耗平衡。点击右侧的 **“Download”** 即可开始下载过程,具体耗时视网络条件而定,通常不超过十分钟[^2]。 #### 解决幻觉现象的技术手段 尽管 LLMs 展现出了惊人的潜力,但“幻觉”问题仍然是不可忽视的一大挑战——即模型可能会编造虚假或不准确的内容。针对这一难题,DeepSeek 设计了一种创新机制:当面对不确定性情境时,引导模型借助外部工具查询真实数据源而非单纯依赖内部推测作答。此策略显著提升了输出结果的信任度和实用性[^3]。 #### 行业应用场景举例 以医疗领域为例,利用像 DeepSeek 这样的先进 AI 工具可以帮助医疗机构建立智能化的知识管理系统。通过对大量医学资料的学习分析,形成覆盖广泛且持续更新的专业数据库,从而助力临床决策优化以及教学培训等工作环节效率提升[^4]。 ```python # 示例代码展示如何调用预训练好的 DeepSeek 模型进行简单问答任务 from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/lite-base") model = AutoModelForCausalLM.from_pretrained("deepseek/lite-base") nlp = pipeline('text-generation', model=model, tokenizer=tokenizer) result = nlp("What is the capital of France?", max_length=50) print(result) ``` 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

00&00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值