莎士比亚风格的文本生成任务是一种**风格模仿(style transfer)**在自然语言处理中的典型应用,目标是生成具有莎士比亚语言风格(如用词、句法、语气等)的文本内容。你可以使用语言模型(如 GPT、LSTM、Transformers)进行这种任务。
一、莎士比亚语言风格特点
莎士比亚时代(伊丽莎白时期)英语具有如下特征:
-
古英语词汇:如 “thou”, “thee”, “thy”, “dost”, “hast”, “art”等
-
倒装结构:如 “Go I must” 而非 “I must go”
-
诗性节奏:常使用五音步抑扬格(iambic pentameter)
-
隐喻丰富:善用比喻、象征、拟人
-
文法灵活:句式、词性变化多端
二、文本生成任务的实现方法
方法一:微调 GPT(如 GPT-2)
你可以用莎士比亚文本微调一个预训练语言模型,使其掌握特定风格。
示例代码(HuggingFace Transformers)
from transformers import GPT2Tokenizer, GPT2LMHeadModel, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
# 加载预训练模型
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# 准备数据
dataset = TextDataset(
tokenizer=tokenizer,
file_path="shakespeare.txt", # 包含莎士比亚作品的文本文件
block_size=128,
)
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# 训练
training_args = TrainingArguments(
output_dir="./shakespeare_model",
overwrite_output_dir=True,
num_train_epochs=3,
per_device_train_batch_size=2,
save_steps=500,
save_total_limit=2,
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset,
)
trainer.train()
生成示例:
from transformers import pipeline
generator = pipeline('text-generation', model='./shakespeare_model')
print(generator("To be, or not to be", max_length=50, num_return_sequences=1)[0]['generated_text'])
方法二:使用已有莎士比亚风格数据+训练LSTM
如果你希望从零开始训练一个模型,可以使用字符级或词级 LSTM。
小型字符级模型架构:
model = Sequential()
model.add(LSTM(256, input_shape=(seq_length, vocab_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(256))
model.add(Dense(vocab_size, activation='softmax'))
训练语料可使用 Project Gutenberg 提供的莎士比亚全集。
三、可用数据集
四、增强效果建议
-
加入节奏控制器:如强制控制行长度模仿诗行
-
韵律模型:添加末尾押韵判别器
-
人物风格迁移:为角色如哈姆雷特、麦克白等定制风格(可加入条件控制)
五、简单生成示例
用 GPT-2 微调后可以生成如下内容:
“Thy love hath made mine eyes forget thy sight,
And in thy absence dost my soul take flight.”
或者输入:
O fair Verona, where we lay our scene...
输出:
“...There do I dwell, with hearts enflamed and keen,
‘Twixt bloody fate and fortune’s subtle sheen.”